This is a tensorflow re-implementation of Cascade R-CNN Delving into High Quality Object Detection .
This project is based on Cascade-RCNN_Tensorflow by YangXue and WangYashan. This project fixed the bug about MobilenetV2 and add Vgg16 backbone. Besides Soft-Nms are implemented
method | AP | AP50 | AP60 | AP70 | AP80 | AP90 |
---|---|---|---|---|---|---|
Vgg16 Faster-RCNN | 0.4059 | 0.6954 | 0.6032 | 0.4506 | 0.2319 | 0.0488 |
Soft-NMS Vgg16 Faster-RCNN | 0.6946 | |||||
Vgg16 Cascade-RCNN | 0.4468 | 0.6856 | 0.6120 | 0.4951 | 0.3331 | 0.1080 |
MobilenetV2-Faster-RCNN | 0.5416 | |||||
Soft-NMS MobilenetV2-Faster-RCNN | 0.5423 |
1、tensorflow >= 1.2
2、cuda8.0
3、python2.7 (anaconda2 recommend)
4、opencv(cv2)
1、please download resnet50_v1、resnet101_v1 、
pre-trained models on Imagenet, put it to $PATH_ROOT/data/pretrained_weights.
2、please download mobilenet_v2 pre-trained model on Imagenet, put it to $PATH_ROOT/data/pretrained_weights/mobilenet.
3、please download trained model by this project, put it to $PATH_ROOT/output/trained_weights.
├── VOCdevkit
│ ├── VOCdevkit_train
│ ├── Annotation
│ ├── JPEGImages
│ ├── VOCdevkit_test
│ ├── Annotation
│ ├── JPEGImages
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace
Select a configuration file in the folder ($PATH_ROOT/libs/configs/) and copy its contents into cfgs.py, then download the corresponding weights.
cd $PATH_ROOT/tools
python inference.py --data_dir='/PATH/TO/IMAGES/'
--save_dir='/PATH/TO/SAVE/RESULTS/'
--GPU='0'
cd $PATH_ROOT/tools
python eval.py --eval_imgs='/PATH/TO/IMAGES/'
--annotation_dir='/PATH/TO/TEST/ANNOTATION/'
--GPU='0'
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/DetectionTeamUCAS/Cascade-RCNN_Tensorflow.git