Mixed Kalman-Fuzzy Sliding Mode State Observer in Disturbance Rejection Control of a Vibrating Smart Structure
In the controllers that are synthesized on a nominal model of the nonlinear plant, the parametric matched uncertainties and nonlinear/unmodeled dynamics of high order nature can significantly affect the performance of the closed-loop system. In this note, owing to the robust character of the sliding mode observer against modeling perturbations, measurement noise, and unknown disturbances and due to the non-fragile behavior of the Kalman filter against process noise, a mixed Kalman sliding mode state-observer is proposed and later enhanced by the addition of an intelligent fuzzy agent. In light of the proposed technique, the chattering phenomena and the conservative boundary neighboring layer of the high gain sliding mode observer are addressed. Then, a robust active disturbance rejection controller is developed by using static feedback of the estimated states using direct Lyapunov quadratic stability Theorem. The reduced order plant for control design purposes is subjected to some simulated square-integrable disturbances and is assumed to have mismatch uncertainties in system matrices. Finally, the robust performance of the closed-loop scheme with respect to the mentioned perturbation signals and modeling imperfections is tested by implementing the control system on a mechanical vibrating smart cantilever beam.
Keywords: Fuzzy system; Nonlinear control; Active disturbance rejection; Kalman Filter; Vibration suppression.
refer to https://scholar.google.com/citations?user=-HRHoYoAAAAJ&hl=de
REFERENCES
-
Du, H. Lam, J. and Sze, K.Y. Non-fragile H∞ vibration control for uncertain structural systems. J. Sound Vib., 273 (4), 1031–1045 (2004). DOI: 10.1016/S0022-460X(03)00520-0
-
Oveisi, A. and Nestorovic, T. Robust nonfragile observer-based H2/H∞ controller. J. Vib. Control, 1077546316651548 (2016). DOI: 10.1016/S0022-460X(03)00520-0
-
Oveisi, A. and Shakeri, R. Robust reliable control in vibration suppression of sandwich circular plates. Eng. Struct., 116, 1–11 (2016). DOI: 10.1016/j.engstruct.2016.02.040
-
Choi, H.H. LMI-Based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans. Automat. Contr., 52 (4), 736–742 (2007). DOI: 10.1109/TAC.2007.894543
-
Oveisi, A. and Nestorović, T. Robust observer-based adaptive fuzzy sliding mode controller. Mech. Syst. Signal Process., 76–77, 58–71 (2016). DOI: 10.1016/j.ymssp.2016.01.015
-
Xie, L. and Soh, Y.C. Robust Kalman filtering for uncertain systems. Syst. Control Lett., 22 (2), 123–129 (1994). DOI: 10.1016/0167-6911(94)90106-6
-
Wang, Z. and Unbehauen, H. Robust H2/H∞-state estimation for systems with error variance constraints: the continuous-time case. Autom. Control. IEEE Trans., 44 (6), 1061–1065 (1999). DOI: 10.1109/9.763229
-
Utkin, V. and Jingxin Shi Integral sliding mode in systems operating under uncertainty conditions. Proc. 35th IEEE Conf. Decis. Control, 4, 4591–4596. DOI: 10.1109/CDC.1996.577594
-
Edwards, C. and Spurgeon, S.K. On the development of discontinuous observers. Int. J. Control, 59 (5), 1211–1229 (1994). DOI: 10.1080/00207179408923128
-
Utkin, V.I. Sliding Modes in Control and Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg (1992).
-
Young, K.D. Utkin, V.I. and Ozguner, U. A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol., 7 (3), 328–342 (1999). DOI: 10.1109/87.761053
-
Slotine, J.-J.E. and Li, W. Applied Nonlinear Control. Appl. Spectrosc., 62 (7), 174–174 (1991).
-
Keighobadi, J. and Menhaj, M.B. From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots. Asian J. Control, 14 (4), 960–973 (2012). DOI: 10.1002/asjc.480
-
Rajamani, R. Observers for Lipschitz nonlinear systems. IEEE Trans. Automat. Contr., 43 (3), 397–401 (1998). DOI: 10.1109/9.661604
-
Zhiqiang Gao Active disturbance rejection control: a paradigm shift in feedback control system design. 2006 Am. Control Conf., 7 pp. (2006). DOI: 10.1109/ACC.2006.1656579
-
She, J.-H. Fang, M. Ohyama, Y. et al. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. Ind. Electron., 55 (1), 380–389 (2008). DOI: 10.1109/TIE.2007.905976
-
Wai, R.-J. Lin, C.-M. and Hsu, C.-F. Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets Syst., 143 (2), 295–310 (2004). DOI: 10.1016/S0165-0114(03)00199-4
-
Gholami, A. and Markazi, A.H.D. A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn., 70 (3), 2095–2105 (2012). DOI: 10.1007/s11071-012-0602-0
-
Chen, K. Paurobally, R. Pan, J. and Qiu, X. Improving active control of fan noise with automatic spectral reshaping for reference signal. Appl. Acoust., 87, 142–152 (2015). DOI: 10.1016/j.apacoust.2014.07.003
-
Hasheminejad, S.M. and Oveisi, A. Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs. Int. J. Mech. Mater. Des., 12 (1), 1–16 (2016). DOI: 10.1007/s10999-015-9293-2
-
Soize, C. Random matrix theory for modeling uncertainties in computational mechanics. Comput. Methods Appl. Mech. Eng., 194 (12–16), 1333–1366 (2005). DOI: 10.1016/j.cma.2004.06.038
-
Oveisi, A. Nestorović, T. and Nguyen, N.L. Semi-analytical modeling and vibration control of a geometrically nonlinear plate. Int. J. Struct. Stab. Dyn., 1771003 (2016). DOI: 10.1142/S0219455417710031
-
Noël, J.P. and Kerschen, G. Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process., 83, 2–35 (2017). DOI: 10.1016/j.ymssp.2016.07.020
-
Mignolet, M.P. and Soize, C. Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies. Probabilistic Eng. Mech., 23 (2), 267–278 (2008). DOI: 10.1016/j.probengmech.2007.12.027
-
Bossi, L. Rottenbacher, C. Mimmi, G. and Magni, L. Multivariable predictive control for vibrating structures: An application. Control Eng. Pract., 19 (10), 1087–1098 (2011). DOI: 10.1016/j.conengprac.2011.05.003
-
Adhikari, S. Friswell, M.I. Lonkar, K. and Sarkar, A. Experimental case studies for uncertainty quantification in structural dynamics. Probabilistic Eng. Mech., 24 (4), 473–492 (2009). DOI: 10.1016/j.probengmech.2009.01.005
-
Gerla, G. Fuzzy logic programming and fuzzy control. Stud. Log., 79 (2), 231–254 (2005). DOI: 10.1007/s11225-005-2977-0
-
Yau, H.-T. and Chen, C.-L. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons & Fractals, 30 (3), 709–718 (2006). DOI: 10.1016/j.chaos.2006.03.077
-
Boyd, S. El Ghaoui, L. Feron, E. and Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory (1994).
-
Xie, W. An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems. J. Inequalities Appl., 2008 (1), 672905 (2008). DOI: 10.1155/2008/672905
-
Lien, C.-H. Cheng, W.-C. Tsai, C.-H. and Yu, K.-W. Non-fragile observer-based controls of linear system via LMI approach. Chaos, Solitons & Fractals, 32 (4), 1530–1537 (2007). DOI: 10.1016/j.chaos.2005.11.092
-
Oveisi, A. and Nestorović, T. Transient response of an active nonlinear sandwich piezolaminated plate. Commun. Nonlinear Sci. Numer. Simul., 45, 158–175 (2017). DOI: 10.1016/j.cnsns.2016.09.012
-
Sachdeva, S.K. Nair, P.B. and Keane, A.J. Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probabilistic Eng. Mech., 21 (2), 182–192 (2006). DOI: 10.1016/j.probengmech.2005.09.003
-
Pourgholi, M. and Majd, V.J. A new non-fragile H∞ proportional—integral filtered-error adaptive observer for a class of non-linear systems and its application to synchronous generators. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., 225 (1), 99–112 (2011). DOI: 10.1243/09596518JSCE1061