Yiqun Lin, Liang Pan, Yi Li, Ziwei Liu, and Xiaomeng Li, "Exploiting Hierarchical Interactions for Protein Surface Learning," J-BHI 2024. preprint
@article{lin2024exploiting,
author={Lin, Yiqun and Pan, Liang and Li, Yi and Liu, Ziwei and Li, Xiaomeng},
journal={IEEE Journal of Biomedical and Health Informatics},
title={Exploiting Hierarchical Interactions for Protein Surface Learning},
year={2024},
doi={10.1109/JBHI.2024.3356231}
}
python 3.6, CUDA 11.1
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install tqdm msgpack six tabulate termcolor pyyaml easydict
pip install Biopython sklearn ninja==1.10.2
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
cd pointnet2
python setup.py install
Data can be downloaded and processed following https://github.com/FreyrS/dMaSIF/blob/master/data.py. The raw data is structured as
./data/raw/
├── 01-benchmark_pdbs
│ └── 1A0G_A.pdb
├── 01-benchmark_surfaces
│ └── 1A0G_A.ply
Then, modify the path (DATA_RAW
) in ./utils/config.py
to the data folder. For each task (site/search), run the preprocessing script (./<pdb_task>/preprocessing.py
) to generate training/testing data.
For each task (site/search), follow the scripts given in ./tasks/<pdb_task>/scripts/<train/test>.sh
to conduct training and testing.
Task | ROC-AUC | Checkpoint |
---|---|---|
pdb_site | 0.893 | epoch_146.pth |
pdb_search | 0.826 | epoch_106.pth |
This repository is released under MIT License (see LICENSE file for details).