/Fast_Stacked_Hourglass_Network_OpenVino

A fast stacked hourglass network for human pose estimation on OpenVino

Primary LanguagePython

Fast_Stacked_Hourglass_Network_OpenVino

A fast stacked hourglass network for human pose estimation on OpenVino. Stacked hourglass network proposed by Stacked Hourglass Networks for Human Pose Estimation is a very good network for single-person pose estimation regarding to speed and accuracy. This repo contains a demo to show how to depoly model trained by Keras. It converts a Keras model to IR and shows how to use the generated IR to do inference. Have fun with OpenVino!

Installation

  • Python3
  • Install OpenVino 2018 R5
  • Install python dependencies
keras==2.1.5
scipy==1.2.0
tensorflow==1.12.0
opencv-python==3.4.3.18

[Keras] Convert pre-trained Keras models

Download pre-trained hourglass models

  • Download models from Google drive and save them to models. You are going to download two files, one is json file for network configuration while another is weight.
  • hg_s2_b1_mobile, inputs: 256x256x3, Channel Number: 256, pckh 78.86% @MPII.
  • hg_s2_b1_tiny, inputs:192x192x3, Channel Number: 128, pckh@75.11%MPII.

Convert keras models to tensorflow forzen pb

  • Convert keras models to tf frozen pb
python3 tools/keras_to_tfpb.py --input_model_json ./models/path/to/network/json --input_model_weights
./models/path/to/network/weight/h5 --out_tfpb ./models/hg_s2_b1_tf.pb

Use OpenVino Model Optimizer to convert tf pb to IR.

  • For CPU, please use mobile version hg_s2_b1_mobile and FP32
~/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py -w ./models/hg_s2_b1_tf.pb --input_shape [1,256,256,3] --data_type FP32 --output_dir ./models/ --model_name hg_s2_mobile
  • For NCS2(Myriad), please use tiny version hg_s2_b1_tiny and FP16
~/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py -w ./models/hg_s2_b1_tf.pb --input_shape [1,192,128,3] --data_type FP16 --output_dir ./models/ --model_name hg_s2_tiny
  • .xml and .bin will be generated.

[PyTorch] Convert pre-trained Onnx models

Download model trained by pytorch

Download the model_best.onnx model from below table to fit your accuracy and speed requirements. hg_s2_b1_mobile_fpd model trained by using the knowledge distillation proposed by paper Fast Human Pose Estimation. Details can be found in Fast_Human_Pose_Estimation_Pytorch.

Model in_res featrues # of Weights Head Shoulder Elbow Wrist Hip Knee Ankle Mean Link
hg_s2_b1 256 128 6.73m 95.74 94.51 87.68 81.70 87.81 80.88 76.83 86.58 GoogleDrive
hg_s2_b1_mobile 256 128 2.31m 95.80 93.61 85.50 79.63 86.13 77.82 73.62 84.69 GoogleDrive
hg_s2_b1_mobile_fpd 256 128 2.31m 95.67 94.07 86.31 79.68 86.00 79.67 75.51 85.41 GoogleDrive
hg_s2_b1_tiny 192 128 2.31m 94.95 92.87 84.59 78.19 84.68 77.70 73.07 83.88 GoogleDrive

Convert onnx to IR

Use model optimizer to convert onnx to IR. FP32 for CPU while FP16 for MYRIAD

~/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo.py -w ./models/model_best.onnx --data_type FP32 --output_dir ./models/ --model_name hg_s2_mobile_onnx 

Run demo

  • Run single image demo on CPU
cd src
python3 stacked_hourglass.py -i ../models/sample.jpg -m ../models/hg_s2_mobile.xml -d CPU -l /path/to/cpu/extension/library
  • Run single image demo on NCS2(MYRIAD)
cd src
python3 stacked_hourglass.py -i ../models/sample.jpg -m ../models/hg_s2_tiny.xml -d MYRIAD
  • Run Aysnc demo with camera input on CPU
cd src
python3 stacked_hourglass_camera_async.py -i cam -m ../models/hg_s2_mobile.xml -d CPU -l /path/to/cpu/extension/library

Reference