project page | paper | video
This is an implementation for our paper "3D LiDAR and Stereo Fusion using Stereo Matching Network with Conditional Cost Volume Normalization", IROS 2019.
- PyTorch
- tqdm
- tensorboardX
- easydict
- scikit-image
- PIL
- termcolor
- Setup data and directories (opt to you as long as the data is linked correctly). Download KITTI Depth Completion and KITTI Stereo 2015 Dataset. Set the directory structure for data as follows:
# KITTI Depth Completion
./data/
|--kitti2017/
|--rgb/
|--2011_09_26/
|--2011_09_28/
|--2011_09_29/
|--2011_09_30/
|--2011_10_03/
|--depth/
|--train/
|--val
# KITTI Stereo 2015
./data/
|--kitti_stereo/
|--data_scene_flow/
|--training/
|--testing/
Afterward, setup a directory for all experiments. All you have to do in advance may look like this,
>> mkdir -p ${SOMEWHERE}/data/kitti2017 ${SOMEWHERE}data/kitti_stereo
# DOWNLOAD KITTI DEPTH COMPLETION
>> cd ${SOMEWHERE}/data/kitti2017
# reqest download from http://www.cvlibs.net/download.php?file=data_depth_annotated.zip
>> unzip data_depth_annotated.zip
# request the raw data downloader from http://www.cvlibs.net/download.php?file=raw_data_downloader.zip
>> unzip raw_data_downloader
>> ./raw_data_downloader/raw_data_downloader.sh # NOTE: the raw data is extremely large (about 200GB), make sure you have enough disk space and prepared to wait for a long time
# DOWNLOAD KITTI STEREO 2015
>> cd ${SOMEWHERE}/data/kitti_stereo
# request download from http://www.cvlibs.net/download.php?file=data_scene_flow.zip
>> unzip data_scene_flow.zip
# SETUP REPO
>> git clone https://github.com/zswang666/Stereo-LiDAR-CCVNorm.git
>> cd Stereo-LiDAR-CCVNorm
>> mkdir -p data/kitti2017 data/kitti_stereo
>> ln -s ${SOMEWHERE}/data/kitti2017/data_depth_annotated data/kitti2017/depth
>> ln -s ${SOMEWHERE}/data/kitti2017 data/kitti2017/rgb
>> ln -s ${SOMEWHERE}/data/kitti_stereo data/kitti_stereo
>> mkdir exp
- Training procedure (detailed configuration is specified in here):
>> vim misc/options.py # edit training configuration; see comments for more detailed explanation
>> python train.py
- Testing prodedure:
# For KITTI Depth Completion
>> python test.py --model_cfg exp/test/test_options.py --model_path exp/test/ckpt/\[ep-00\]giter-0.ckpt --dataset kitti2017 --rgb_dir ./data/kitti2017/rgb --depth_dir ./data/kitti2015/depth
# For KITTI Stereo
>> python test.py --model_cfg exp/test/test_options.py --model_path exp/test/ckpt/\[ep-00\]giter-0.ckpt --dataset kitti2015 --root_dir ./data/kitti_stereo/data_scene_flow
- Checkout
model/ccvnorm.py
for detailed implementation of our Conditional Cost Volume Normalization. - The training process will cost a lot of GPU memory. Please make sure you have a GPU with 16G or larger memory.
- For testing (without gradient stored), 1080Ti (12G) is enough for a 256 x 960 image.
@article{wang20193d,
title={3D LiDAR and Stereo Fusion using Stereo Matching Network with Conditional Cost Volume Normalization},
author={Wang, Tsun-Hsuan and Hu, Hou-Ning and Lin, Chieh Hubert and Tsai, Yi-Hsuan and Chiu, Wei-Chen and Sun, Min},
journal={arXiv preprint arXiv:1904.02917},
year={2019}
}