zxp555's Stars
afatcoder/LeetcodeTop
汇总各大互联网公司容易考察的高频leetcode题🔥
ddbourgin/numpy-ml
Machine learning, in numpy
hoya012/deep_learning_object_detection
A paper list of object detection using deep learning.
utkuozbulak/pytorch-cnn-visualizations
Pytorch implementation of convolutional neural network visualization techniques
amusi/AI-Job-Notes
AI算法岗求职攻略(涵盖准备攻略、刷题指南、内推和AI公司清单等资料)
Trusted-AI/adversarial-robustness-toolbox
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
nosuggest/Reflection_Summary
算法理论基础知识应知应会
Harry24k/adversarial-attacks-pytorch
PyTorch implementation of adversarial attacks [torchattacks]
WongKinYiu/PyTorch_YOLOv4
PyTorch implementation of YOLOv4
WarBean/tps_stn_pytorch
PyTorch implementation of Spatial Transformer Network (STN) with Thin Plate Spline (TPS)
shangtse/robust-physical-attack
Physical adversarial attack for fooling the Faster R-CNN object detector
idrl-lab/Adversarial-Attacks-on-Object-Detectors-Paperlist
A Paperlist of Adversarial Attack on Object Detection
idrl-lab/Full-coverage-camouflage-adversarial-attack
https://idrl-lab.github.io/Full-coverage-camouflage-adversarial-attack/
roboflow/pytorch-YOLOv4
Minimal PyTorch implementation of YOLOv4
WhoTHU/Adversarial_camou
Cater5009/Traffic-sign-recognition
使用PCA、NMF和HOG特征,分别配以KNN(k=1,3,5)和SVM两类分类器,实现对交通标志的分类(包括对其余类的拒识)
jennalau/feature-vis-yolov3
Feature visualization tool for YOLOv3, a real-time objection detection algorithm using a deep convolutional network with a Darknet backbone. Visualizes performance attributes via saliency maps to identify how features in the input pixel space influence our network’s predictions in terms of classification and localization
winterwindwang/neural_renderer
A PyTorch port of the Neural 3D Mesh Renderer
rajak7/RL_kirigami
Deep Reinforcement Learning Assisted Kirigami Design of 2D Material
wizut-cvlab/pedestrian_detector
Detect pedestrians in infrared by Haar Features Cascades. As a ground truth we use tracking manual marked subjects
zxp555/THU_TIR-dataset