Dataset
View Dataset .json
B-I-O
{0: 'O', 1: 'B', 2: 'I'}
Labels
{'UNK': 0, 'plant': 1, 'disease': 2} {0: 'UNK', 1: 'plant', 2: 'disease'}
Json
[
{
'id' : ...,
'labels' : ['Truncate', 'Type Entity', 'Start Entity', 'End Entity', 'Entity Names'],
'text': ...
}
]
Example
[
{
'id': 0,
'labels': [['T0', 'plant', 46, 55, 'digitalis'],
['T1', 'disease', 64, 75, 'arrhythmias']],
'text': 'studies on magnesium s mechanism of action in digitalis induced arrhythmias'
},
...
]
Fine Tuning | Biobert-Plant-Disease | Biobert-Plant-Disease | Biobert-Plant-Disease | Biobert-Plant-Disease |
---|---|---|---|---|
Model | Bert | Bert-CRF | Bert-Bilstm | Bert-Bilstm-CRF |
Batch Size | 2 | 2 | 2 | 2 |
Epoch | 10 | 10 | 10 | 10 |
Iterasi | 393 | 393 | 393 | 393 |
Step | 3.930 | 3.930 | 3.930 | 3.930 |
Learning Rate | 0,00003 | 0,00003 | 0,00003 | 0,00003 |
Dropout | 0,1 | 0,1 | 0,1 | 0,1 |
Entitas | (Plant) (Disease) | (Plant) (Disease) | (Plant) (Disease) | (Plant) (Disease) |
Precision | (0,86) (0,66) | (0,79) (0,64) | (0,87) (0,68) | (0,82) (0,62) |
Recall | (0,64) (0,43) | (0,64) (0,41) | (0,64) (0,42) | (0,64) (0,44) |
F-1 Score | (0,73) (0,52) | (0,71) (0,5) | (0,74) (0,51) | (0,72) (0,51) |
Average/Total | ||||
Precision | 0,74 | 0,71 | 0,76 | 0,7 |
Recall | 0,51 | 0,5 | 0,51 | 0,52 |
F-1 Score | 0,61 | 0,58 | 0,61 | 0,6 |
Eksekusi | 0:22:35 | 1:01:40 | 0:25:28 | 1:04:07 |
Device | Cuda Tesla T4 | Cuda Tesla T4 | Cuda Tesla T4 | Cuda Tesla T4 |
effects of korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic
{'plant': [['ginseng', 22]], 'disease': [['neural', 42], ['tube', 49], ['defects', 54]]}