Codebase for RAIL : Risk Averse Imitation Learning, presented at the Deep Reinforcement Learning Symposium at NIPS 2017 and published as Extended Abstract in AAMAS-2018.
- Set up MuJoCo on your machine. Please download
mjpro131
for compatibility with the rest of the code. - Install Anaconda Python 2.7 and set it as the default python:
$ export PATH="/home/username/anaconda2/bin:$PATH"
$ which python
/home/username/anaconda2/bin/python
Make changes in the .bashrc
for permanent results.
- Install the required packages.
pip install mujoco-py==0.5.7
pip install theano
pip install gym
-
Clone the OpenAI-imitation (GAIL) repository.
git clone https://github.com/openai/imitation.git
-
Clone the RAIL bitbucket repository.
git clone https://abhisheknaik96@bitbucket.org/intelpclfad/rail.git
-
Add the path to the RAIL repository to
$PYTHONPATH
-
Copy the
expert_policies
directory from GAIL to RAIL. -
Run the initialization script:
username@machine:/path/to/RAIL$ chmod +x initialize.sh
username@machine:/path/to/RAIL$ ./initialize.sh
- Run the training script. Example usage:
username@machine:/path/to/RAIL$ chmod +x run/run_all/*
username@machine:/path/to/RAIL$ ./run/run_all/run_hopper.sh > training_logs/hopper_log.log
In case of any issues, feel free to contact the authors/developers :
- Anirban Santara (nrbnsntr@gmail.com)
- Abhishek Naik (abhisheknaik22296@gmail.com)