RuntimeError: stack expects a non-empty TensorList
QiyangZ opened this issue · 1 comments
Hello @BorisIvanovic ,
First of all, thank you for sharing the code of this amazing project!
I trained this model with full nuScene dataset, but I encountered some strange errors when visualizing the results.
I just trained the model and loaded model_registrar-12.pt
from corresponding folder (not in int_ee, but in the folder that generated after training). Except that I didn't change anything in NuScenes Qualitative.ipynb
. But when I run it, there was a RuntimeError: stack expects a non-empty TensorList
. I'm sure I'm in the correct environment and used the correct kernel. The whole day I tried to figure it out but failed. Could you help me with that? The details is below:
Thank you in advance!
Best wishes
RuntimeError Traceback (most recent call last)
<ipython-input-38-c36cd443b374> in <module>
5 timestep,
6 ph,
----> 7 num_samples=500)
8
9 predictions_mm = eval_stg.predict(scene,
[/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/trajectron.py](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/trajectron.py) in predict(self, scene, timesteps, ph, num_samples, min_future_timesteps, min_history_timesteps, z_mode, gmm_mode, full_dist, all_z_sep)
183 gmm_mode=gmm_mode,
184 full_dist=full_dist,
--> 185 all_z_sep=all_z_sep)
186
187 predictions_np = predictions.cpu().detach().numpy()
[/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py) in predict(self, inputs, inputs_st, first_history_indices, neighbors, neighbors_edge_value, robot, map, prediction_horizon, num_samples, z_mode, gmm_mode, full_dist, all_z_sep)
1126 neighbors_edge_value=neighbors_edge_value,
1127 robot=robot,
-> 1128 map=map)
1129
1130 self.latent.p_dist = self.p_z_x(mode, x)
[/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py) in obtain_encoded_tensors(self, mode, inputs, inputs_st, labels, labels_st, first_history_indices, neighbors, neighbors_edge_value, robot, map)
494
495 if self.hyperparams['incl_robot_node']:
--> 496 robot_future_encoder = self.encode_robot_future(mode, x_r_t, y_r)
497 x_concat_list.append(robot_future_encoder)
498
[/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/mnt/cephFS/home/qzong/Trajectron-plus-plus/trajectron/model/mgcvae.py) in encode_robot_future(self, mode, robot_present, robot_future)
708 initial_state = (initial_h, initial_c)
709
--> 710 _, state = self.node_modules['robot_future_encoder'](robot_future, initial_state)
711 state = unpack_RNN_state(state)
712 state = F.dropout(state,
[~/miniconda3/envs/trajectron](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/home/qzong/Trajectron-plus-plus/experiments/nuScenes/~/miniconda3/envs/trajectron)++/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
[~/miniconda3/envs/trajectron](https://vscode-remote+ssh-002dremote-002bgpu-002elsr-002eei-002etum-002ede.vscode-resource.vscode-cdn.net/home/qzong/Trajectron-plus-plus/experiments/nuScenes/~/miniconda3/envs/trajectron)++/lib/python3.6/site-packages/torch/nn/modules/rnn.py in forward(self, input, hx)
557 if batch_sizes is None:
558 result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,
--> 559 self.dropout, self.training, self.bidirectional, self.batch_first)
560 else:
561 result = _VF.lstm(input, batch_sizes, hx, self._flat_weights, self.bias,
RuntimeError: stack expects a non-empty TensorList
I solved this problem with changing model. Thank you all~