RL Baselines3 Zoo is a training framework for Reinforcement Learning (RL), using Stable Baselines3.
It provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.
In addition, it includes a collection of tuned hyperparameters for common environments and RL algorithms, and agents trained with those settings.
We are looking for contributors to complete the collection!
Goals of this repository:
- Provide a simple interface to train and enjoy RL agents
- Benchmark the different Reinforcement Learning algorithms
- Provide tuned hyperparameters for each environment and RL algorithm
- Have fun with the trained agents!
This is the SB3 version of the original SB2 rl-zoo.
The hyperparameters for each environment are defined in hyperparameters/algo_name.yml
.
If the environment exists in this file, then you can train an agent using:
python train.py --algo algo_name --env env_id
For example (with tensorboard support):
python train.py --algo ppo --env CartPole-v1 --tensorboard-log /tmp/stable-baselines/
Evaluate the agent every 10000 steps using 10 episodes for evaluation (using only one evaluation env):
python train.py --algo sac --env HalfCheetahBulletEnv-v0 --eval-freq 10000 --eval-episodes 10 --n-eval-envs 1
Save a checkpoint of the agent every 100000 steps:
python train.py --algo td3 --env HalfCheetahBulletEnv-v0 --save-freq 100000
Continue training (here, load pretrained agent for Breakout and continue training for 5000 steps):
python train.py --algo a2c --env BreakoutNoFrameskip-v4 -i rl-trained-agents/a2c/BreakoutNoFrameskip-v4_1/BreakoutNoFrameskip-v4.zip -n 5000
When using off-policy algorithms, you can also save the replay buffer after training:
python train.py --algo sac --env Pendulum-v1 --save-replay-buffer
It will be automatically loaded if present when continuing training.
Plot scripts (to be documented, see "Results" sections in SB3 documentation):
scripts/all_plots.py
/scripts/plot_from_file.py
for plotting evaluationsscripts/plot_train.py
for plotting training reward/success
Examples (on the current collection)
Plot training success (y-axis) w.r.t. timesteps (x-axis) with a moving window of 500 episodes for all the Fetch
environment with HER
algorithm:
python scripts/plot_train.py -a her -e Fetch -y success -f rl-trained-agents/ -w 500 -x steps
Plot evaluation reward curve for TQC, SAC and TD3 on the HalfCheetah and Ant PyBullet environments:
python scripts/all_plots.py -a sac td3 tqc --env HalfCheetah Ant -f rl-trained-agents/
The RL zoo integrates some of rliable library features. You can find a visual explanation of the tools used by rliable in this blog post.
First, you need to install rliable.
Note: Python 3.7+ is required in that case.
Then export your results to a file using the all_plots.py
script (see above):
python scripts/all_plots.py -a sac td3 tqc --env Half Ant -f logs/ -o logs/offpolicy
You can now use the plot_from_file.py
script with --rliable
, --versus
and --iqm
arguments:
python scripts/plot_from_file.py -i logs/offpolicy.pkl --skip-timesteps --rliable --versus -l SAC TD3 TQC
Note: you may need to edit plot_from_file.py
, in particular the env_key_to_env_id
dictionary
and the scripts/score_normalization.py
which stores min and max score for each environment.
Remark: plotting with the --rliable
option is usually slow as confidence interval need to be computed using bootstrap sampling.
The easiest way to add support for a custom environment is to edit utils/import_envs.py
and register your environment here. Then, you need to add a section for it in the hyperparameters file (hyperparams/algo.yml
).
Note: to download the repo with the trained agents, you must use git clone --recursive https://github.com/DLR-RM/rl-baselines3-zoo
in order to clone the submodule too.
If the trained agent exists, then you can see it in action using:
python enjoy.py --algo algo_name --env env_id
For example, enjoy A2C on Breakout during 5000 timesteps:
python enjoy.py --algo a2c --env BreakoutNoFrameskip-v4 --folder rl-trained-agents/ -n 5000
If you have trained an agent yourself, you need to do:
# exp-id 0 corresponds to the last experiment, otherwise, you can specify another ID
python enjoy.py --algo algo_name --env env_id -f logs/ --exp-id 0
To load the best model (when using evaluation environment):
python enjoy.py --algo algo_name --env env_id -f logs/ --exp-id 1 --load-best
To load a checkpoint (here the checkpoint name is rl_model_10000_steps.zip
):
python enjoy.py --algo algo_name --env env_id -f logs/ --exp-id 1 --load-checkpoint 10000
To load the latest checkpoint:
python enjoy.py --algo algo_name --env env_id -f logs/ --exp-id 1 --load-last-checkpoint
The syntax used in hyperparameters/algo_name.yml
for setting hyperparameters (likewise the syntax to overwrite hyperparameters on the cli) may be specialized if the argument is a function. See examples in the hyperparameters/
directory. For example:
- Specify a linear schedule for the learning rate:
learning_rate: lin_0.012486195510232303
Specify a different activation function for the network:
policy_kwargs: "dict(activation_fn=nn.ReLU)"
We use Optuna for optimizing the hyperparameters. Not all hyperparameters are tuned, and tuning enforces certain default hyperparameter settings that may be different from the official defaults. See utils/hyperparams_opt.py for the current settings for each agent.
Hyperparameters not specified in utils/hyperparams_opt.py are taken from the associated YAML file and fallback to the default values of SB3 if not present.
Note: when using SuccessiveHalvingPruner ("halving"), you must specify --n-jobs > 1
Budget of 1000 trials with a maximum of 50000 steps:
python train.py --algo ppo --env MountainCar-v0 -n 50000 -optimize --n-trials 1000 --n-jobs 2 \
--sampler tpe --pruner median
Distributed optimization using a shared database is also possible (see the corresponding Optuna documentation):
python train.py --algo ppo --env MountainCar-v0 -optimize --study-name test --storage sqlite:///example.db
Print and save best hyperparameters of an Optuna study:
python scripts/parse_study.py -i path/to/study.pkl --print-n-best-trials 10 --save-n-best-hyperparameters 10
The default budget for hyperparameter tuning is 500 trials and there is one intermediate evaluation for pruning/early stopping per 100k time steps.
Note that the default hyperparameters used in the zoo when tuning are not always the same as the defaults provided in stable-baselines3. Consult the latest source code to be sure of these settings. For example:
-
PPO tuning assumes a network architecture with
ortho_init = False
when tuning, though it isTrue
by default. You can change that by updating utils/hyperparams_opt.py. -
Non-episodic rollout in TD3 and DDPG assumes
gradient_steps = train_freq
and so tunes onlytrain_freq
to reduce the search space.
When working with continuous actions, we recommend to enable gSDE by uncommenting lines in utils/hyperparams_opt.py.
We support tracking experiment data such as learning curves and hyperparameters via Weights and Biases.
The following command
python train.py --algo ppo --env CartPole-v1 --track --wandb-project-name sb3
yields a tracked experiment at this URL.
In the hyperparameter file, normalize: True
means that the training environment will be wrapped in a VecNormalize wrapper.
Normalization uses the default parameters of VecNormalize
, with the exception of gamma
which is set to match that of the agent. This can be overridden using the appropriate hyperparameters/algo_name.yml
, e.g.
normalize: "{'norm_obs': True, 'norm_reward': False}"
You can specify in the hyperparameter config one or more wrapper to use around the environment:
for one wrapper:
env_wrapper: gym_minigrid.wrappers.FlatObsWrapper
for multiple, specify a list:
env_wrapper:
- utils.wrappers.DoneOnSuccessWrapper:
reward_offset: 1.0
- sb3_contrib.common.wrappers.TimeFeatureWrapper
Note that you can easily specify parameters too.
Following the same syntax as env wrappers, you can also add custom callbacks to use during training.
callback:
- utils.callbacks.ParallelTrainCallback:
gradient_steps: 256
You can specify keyword arguments to pass to the env constructor in the command line, using --env-kwargs
:
python enjoy.py --algo ppo --env MountainCar-v0 --env-kwargs goal_velocity:10
You can easily overwrite hyperparameters in the command line, using --hyperparams
:
python train.py --algo a2c --env MountainCarContinuous-v0 --hyperparams learning_rate:0.001 policy_kwargs:"dict(net_arch=[64, 64])"
Note: if you want to pass a string, you need to escape it like that: my_string:"'value'"
Record 1000 steps with the latest saved model:
python -m utils.record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000
Use the best saved model instead:
python -m utils.record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-best
Record a video of a checkpoint saved during training (here the checkpoint name is rl_model_10000_steps.zip
):
python -m utils.record_video --algo ppo --env BipedalWalkerHardcore-v3 -n 1000 --load-checkpoint 10000
Apart from recording videos of specific saved models, it is also possible to record a video of a training experiment where checkpoints have been saved.
Record 1000 steps for each checkpoint, latest and best saved models:
python -m utils.record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic
The previous command will create a mp4
file. To convert this file to gif
format as well:
python -m utils.record_training --algo ppo --env CartPole-v1 -n 1000 -f logs --deterministic --gif
Final performance of the trained agents can be found in benchmark.md
. To compute them, simply run python -m utils.benchmark
.
NOTE: this is not a quantitative benchmark as it corresponds to only one run (cf issue #38). This benchmark is meant to check algorithm (maximal) performance, find potential bugs and also allow users to have access to pretrained agents.
7 atari games from OpenAI benchmark (NoFrameskip-v4 versions).
RL Algo | BeamRider | Breakout | Enduro | Pong | Qbert | Seaquest | SpaceInvaders |
---|---|---|---|---|---|---|---|
A2C | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
PPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
DQN | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
QR-DQN | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Additional Atari Games (to be completed):
RL Algo | MsPacman | Asteroids | RoadRunner |
---|---|---|---|
A2C | ✔️ | ✔️ | |
PPO | ✔️ | ✔️ | |
DQN | ✔️ | ✔️ | |
QR-DQN | ✔️ | ✔️ |
RL Algo | CartPole-v1 | MountainCar-v0 | Acrobot-v1 | Pendulum-v1 | MountainCarContinuous-v0 |
---|---|---|---|---|---|
ARS | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
A2C | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
PPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
DQN | ✔️ | ✔️ | ✔️ | N/A | N/A |
QR-DQN | ✔️ | ✔️ | ✔️ | N/A | N/A |
DDPG | N/A | N/A | N/A | ✔️ | ✔️ |
SAC | N/A | N/A | N/A | ✔️ | ✔️ |
TD3 | N/A | N/A | N/A | ✔️ | ✔️ |
TQC | N/A | N/A | N/A | ✔️ | ✔️ |
TRPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
RL Algo | BipedalWalker-v3 | LunarLander-v2 | LunarLanderContinuous-v2 | BipedalWalkerHardcore-v3 | CarRacing-v0 |
---|---|---|---|---|---|
ARS | ✔️ | ✔️ | |||
A2C | ✔️ | ✔️ | ✔️ | ✔️ | |
PPO | ✔️ | ✔️ | ✔️ | ✔️ | |
DQN | N/A | ✔️ | N/A | N/A | N/A |
QR-DQN | N/A | ✔️ | N/A | N/A | N/A |
DDPG | ✔️ | N/A | ✔️ | ||
SAC | ✔️ | N/A | ✔️ | ✔️ | |
TD3 | ✔️ | N/A | ✔️ | ✔️ | |
TQC | ✔️ | N/A | ✔️ | ✔️ | |
TRPO | ✔️ | ✔️ |
See https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs.
Similar to MuJoCo Envs but with a free (MuJoCo 2.1.0+ is now free!) easy to install simulator: pybullet. We are using BulletEnv-v0
version.
Note: those environments are derived from Roboschool and are harder than the Mujoco version (see Pybullet issue)
RL Algo | Walker2D | HalfCheetah | Ant | Reacher | Hopper | Humanoid |
---|---|---|---|---|---|---|
ARS | ||||||
A2C | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
PPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
DDPG | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
SAC | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
TD3 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
TQC | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
TRPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
PyBullet Envs (Continued)
RL Algo | Minitaur | MinitaurDuck | InvertedDoublePendulum | InvertedPendulumSwingup |
---|---|---|---|---|
A2C | ||||
PPO | ||||
DDPG | ||||
SAC | ||||
TD3 | ||||
TQC |
RL Algo | Walker2d | HalfCheetah | Ant | Swimmer | Hopper | Humanoid |
---|---|---|---|---|---|---|
ARS | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
A2C | ✔️ | ✔️ | ✔️ | |||
PPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
DDPG | ||||||
SAC | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
TD3 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
TQC | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
TRPO | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
See https://gym.openai.com/envs/#robotics and DLR-RM#71
MuJoCo version: 1.50.1.0 Gym version: 0.18.0
We used the v1 environments.
RL Algo | FetchReach | FetchPickAndPlace | FetchPush | FetchSlide |
---|---|---|---|---|
HER+TQC | ✔️ | ✔️ | ✔️ | ✔️ |
See https://github.com/qgallouedec/panda-gym/.
Similar to MuJoCo Robotics Envs but with a free easy to install simulator: pybullet.
We used the v1 environments.
RL Algo | PandaReach | PandaPickAndPlace | PandaPush | PandaSlide | PandaStack |
---|---|---|---|---|---|
HER+TQC | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
To visualize the result, you can pass --env-kwargs render:True
to the enjoy script.
See https://github.com/maximecb/gym-minigrid A simple, lightweight and fast Gym environments implementation of the famous gridworld.
RL Algo | Empty | FourRooms | DoorKey | MultiRoom | Fetch |
---|---|---|---|---|---|
A2C | |||||
PPO | |||||
DDPG | |||||
SAC | |||||
TRPO |
There are 19 environment groups (variations for each) in total.
Note that you need to specify --gym-packages gym_minigrid
with enjoy.py
and train.py
as it is not a standard Gym environment, as well as installing the custom Gym package module or putting it in python path.
pip install gym-minigrid
python train.py --algo ppo --env MiniGrid-DoorKey-5x5-v0 --gym-packages gym_minigrid
This does the same thing as:
import gym_minigrid
You can train agents online using colab notebook.
We recommend using stable-baselines3 and sb3_contrib master versions.
apt-get install swig cmake ffmpeg
pip install -r requirements.txt
Please see Stable Baselines3 documentation for alternatives.
Build docker image (CPU):
make docker-cpu
GPU:
USE_GPU=True make docker-gpu
Pull built docker image (CPU):
docker pull stablebaselines/rl-baselines3-zoo-cpu
GPU image:
docker pull stablebaselines/rl-baselines3-zoo
Run script in the docker image:
./scripts/run_docker_cpu.sh python train.py --algo ppo --env CartPole-v1
To run tests, first install pytest, then:
make pytest
Same for type checking with pytype:
make type
To cite this repository in publications:
@misc{rl-zoo3,
author = {Raffin, Antonin},
title = {RL Baselines3 Zoo},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/DLR-RM/rl-baselines3-zoo}},
}
If you trained an agent that is not present in the RL Zoo, please submit a Pull Request (containing the hyperparameters and the score too).
We would like to thank our contributors: @iandanforth, @tatsubori @Shade5 @mcres, @ernestum