地图偏转问题如何处理?
Closed this issue · 3 comments
感谢作者优秀的开源!
感谢作者优秀的开源!
因为我应用的场景比较特殊(船舱环境),项目上有一些对地图处理的需求。但是我对于point-lio的理解不够深入,不知道需要怎么修改才能满足我的要求。
我的雷达是mid360,采回来的一些数据包在这里:链接: https://pan.baidu.com/s/1PmE2aJVYI2zvz-Do4kVHZw?pwd=jlu6 提取码: jlu6
播放数据集后,启动 mapping_mid360.launch 文件开始建图。(没有对于任何源码进行修改)
- mid360.yaml文件如下:(因为点云比较多,有做了下采样的预处理,不过yaml里订阅的是原点云)
common:
lid_topic: "/livox/lidar" #"/filtered_cloud/intensity"
imu_topic: "/livox/imu_192_168_1_151"
con_frame: false # true: if you need to combine several LiDAR frames into one
con_frame_num: 1 # the number of frames combined
cut_frame: false # true: if you need to cut one LiDAR frame into several subframes
cut_frame_time_interval: 0.1 # should be integral fraction of 1 / LiDAR frequency
# time_lag_imu_to_lidar: 0.3 # Time offset between LiDAR and IMU calibrated by other algorithms, e.g., LI-Init (find in Readme)
# the timesample of IMU is transferred from the current timeline to LiDAR's timeline by subtracting this value
time_lag_imu_to_lidar: 0.001792 #-0.009263
preprocess:
lidar_type: 2
scan_line: 6
timestamp_unit: 1 # the unit of time/t field in the PointCloud2 rostopic: 0-second, 1-milisecond, 2-microsecond, 3-nanosecond.
blind: 1.0 #0.5
mapping:
imu_en: true
start_in_aggressive_motion: false # if true, a preknown gravity should be provided in following gravity_init
extrinsic_est_en: true # for aggressive motion, set this variable false
imu_time_inte: 0.005 # = 1 / frequency of IMU
# satu_acc: 3.0 # the saturation value of IMU's acceleration. not related to the units
satu_acc: 4.0
satu_gyro: 35 # the saturation value of IMU's angular velocity. not related to the units
acc_norm: 1.0 # 1.0 for g as unit, 9.81 for m/s^2 as unit of the IMU's acceleration
lidar_meas_cov: 0.1 #0.001 # 0.001; 0.01
acc_cov_output: 500
gyr_cov_output: 1000
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
imu_meas_acc_cov: 0.1 #0.1 # 0.1
imu_meas_omg_cov: 0.1 #0.01 # 0.1
gyr_cov_input: 0.01 # for IMU as input model
acc_cov_input: 0.1 # for IMU as input model
plane_thr: 0.1 # 0.05, the threshold for plane criteria, the smaller, the flatter a plane
match_s: 81
fov_degree: 180 #360
det_range: 50.0
#True表示将世界框架的z轴与重力方向对齐,重力方向应在下面指定
gravity_align: false # true to align the z axis of world frame with the direction of gravity, and the gravity direction should be specified below
gravity: [0.0, 0.0, -9.800291] # gravity to be aligned
gravity_init: [0.0, 0.0, -9.800291] # [0.0, 9.810, 0.0] # # preknown gravity in the first IMU body frame, use when imu_en is false or start from a non-stationary state
# extrinsic_T: [ 0.04165, 0.02326, -0.0284 ]
extrinsic_T: [ 0.011, 0.02329, -0.04412 ]
extrinsic_R: [ 1, 0, 0,
0, 1, 0,
0, 0, 1 ]
odometry:
publish_odometry_without_downsample: false
publish:
path_en: true # false: close the path output
scan_publish_en: true # false: close all the point cloud output
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.
- mapping_mid360.launch文件如下:
<launch>
<!-- Launch file for Livox AVIA LiDAR -->
<arg name="rviz" default="true" />
<node pkg="point_lio" type="pointlio_mapping" name="laserMapping" output="screen">
<rosparam command="load" file="$(find point_lio)/config/mid360.yaml" />
<param name="use_imu_as_input" type="bool" value="0"/> <!--change to 1 to use IMU as input of Point-LIO-->
<param name="prop_at_freq_of_imu" type="bool" value="1"/>
<param name="check_satu" type="bool" value="1"/>
<param name="init_map_size" type="int" value="10"/>
<param name="point_filter_num" type="int" value="1"/> <!--4, 3-->
<param name="space_down_sample" type="bool" value="1" />
<param name="filter_size_surf" type="double" value="0.3" /> <!--0.5, 0.3, 0.2, 0.15, 0.1-->
<param name="filter_size_map" type="double" value="0.2" /> <!--0.5, 0.3, 0.15, 0.1-->
<param name="cube_side_length" type="double" value="2000" /> <!--1000-->
<param name="runtime_pos_log_enable" type="bool" value="0" /> <!--1-->
</node>
<group if="$(arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find point_lio)/rviz_cfg/loam_livox.rviz" />
</group>
launch-prefix="gdb -ex run --args"
</launch>
问题一:地图绕z轴的偏航角度偏差
建图过程中,效果如下:
因为建图初始帧,imu坐标系与 船舱两垂直侧壁和底面 构成的坐标系不是平行的。所以船舱结构俯视投影与grid map存在偏航角偏差。
我想消除上述的偏差,保持建图过程中,船舱俯视投影与grid map能够水平对齐。我应该如何去做呢?
我能想到的时,在建图初始时刻,保持雷达不动,利用实时的点云数据感知拟合船舱侧壁平面。选定船舱一角以及垂直侧面和舱底面作为坐标系。 计算出IMU坐标系相对于选定的船体坐标系的x y方向偏差,以及偏航角度偏差。
在计算出上述的偏差值之后,我应该将偏差值,写入point-lio源码的哪个位置呢?
下面的建图结束后得到的PCD:
问题二:生成的地图绕x和绕y方向存在3度以内的偏差
问题也是出在初始IMU上,初始点云转换成PCD后查看,就有倾斜的状态。但是无论我在yaml中 设置IMU是否与重力对齐(gravity_align: false 或者 true),都会有倾斜的情况出现。非静止起动情况下,IMU偏转更大,地图生成后偏差也更大。
这是bag数据初始7帧点云叠加的侧视图和正视图:
针对上述的两个问题,您可以帮忙分析一下问题的本质原因和我想的是一样的吗?可以提供一些解决方案嘛?
你好,livox mid360和livox avia是用一样的雷达type,也就是lidar_type要改为1 获取 Outlook for iOShttps://aka.ms/o0ukef
…
________________________________ 发件人: Mandy @.> 发送时间: Saturday, July 13, 2024 12:58:49 PM 收件人: hku-mars/Point-LIO @.> 抄送: Subscribed @.> 主题: Re: [hku-mars/Point-LIO] 地图z处理问题 (Issue #92) This is an external email. 感谢作者优秀的开源! 因为我应用的场景比较特殊(船舱环境),项目上有一些对地图处理的需求。但是我对于point-lio的理解不够深入,不知道需要怎么修改才能满足我的要求。 我的雷达是mid360,采回来的一些数据包在这里:链接: https://pan.baidu.com/s/1PmE2aJVYI2zvz-Do4kVHZw?pwd=jlu6 提取码: jlu6 播放数据集后,启动 mapping_mid360.launch 文件开始建图。(没有对于任何源码进行修改) * mid360.yaml文件如下:(因为点云比较多,有做了下采样的预处理,不过yaml里订阅的是原点云) common: lid_topic: "/livox/lidar" #"/filtered_cloud/intensity" imu_topic: "/livox/imu_192_168_1_151" con_frame: false # true: if you need to combine several LiDAR frames into one con_frame_num: 1 # the number of frames combined cut_frame: false # true: if you need to cut one LiDAR frame into several subframes cut_frame_time_interval: 0.1 # should be integral fraction of 1 / LiDAR frequency # time_lag_imu_to_lidar: 0.3 # Time offset between LiDAR and IMU calibrated by other algorithms, e.g., LI-Init (find in Readme) # the timesample of IMU is transferred from the current timeline to LiDAR's timeline by subtracting this value time_lag_imu_to_lidar: 0.001792 #-0.009263 preprocess: lidar_type: 2 scan_line: 6 timestamp_unit: 1 # the unit of time/t field in the PointCloud2 rostopic: 0-second, 1-milisecond, 2-microsecond, 3-nanosecond. blind: 1.0 #0.5 mapping: imu_en: true start_in_aggressive_motion: false # if true, a preknown gravity should be provided in following gravity_init extrinsic_est_en: true # for aggressive motion, set this variable false imu_time_inte: 0.005 # = 1 / frequency of IMU # satu_acc: 3.0 # the saturation value of IMU's acceleration. not related to the units satu_acc: 4.0 satu_gyro: 35 # the saturation value of IMU's angular velocity. not related to the units acc_norm: 1.0 # 1.0 for g as unit, 9.81 for m/s^2 as unit of the IMU's acceleration lidar_meas_cov: 0.1 #0.001 # 0.001; 0.01 acc_cov_output: 500 gyr_cov_output: 1000 b_acc_cov: 0.0001 b_gyr_cov: 0.0001 imu_meas_acc_cov: 0.1 #0.1 # 0.1 imu_meas_omg_cov: 0.1 #0.01 # 0.1 gyr_cov_input: 0.01 # for IMU as input model acc_cov_input: 0.1 # for IMU as input model plane_thr: 0.1 # 0.05, the threshold for plane criteria, the smaller, the flatter a plane match_s: 81 fov_degree: 180 #360 det_range: 50.0 #True表示将世界框架的z轴与重力方向对齐,重力方向应在下面指定 gravity_align: false # true to align the z axis of world frame with the direction of gravity, and the gravity direction should be specified below gravity: [0.0, 0.0, -9.800291] # gravity to be aligned gravity_init: [0.0, 0.0, -9.800291] # [0.0, 9.810, 0.0] # # preknown gravity in the first IMU body frame, use when imu_en is false or start from a non-stationary state # extrinsic_T: [ 0.04165, 0.02326, -0.0284 ] extrinsic_T: [ 0.011, 0.02329, -0.04412 ] extrinsic_R: [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] odometry: publish_odometry_without_downsample: false publish: path_en: true # false: close the path output scan_publish_en: true # false: close all the point cloud output scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame pcd_save: pcd_save_en: true interval: -1 # how many LiDAR frames saved in each pcd file; # -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames. * mapping_mid360.launch文件如下: launch-prefix="gdb -ex run --args" 问题一:地图绕z轴的偏航角度偏差 建图过程中,效果如下: 2175mapping.png (view on web)https://github.com/user-attachments/assets/3d7a1286-cb2c-4087-8d41-6fa5946b3032 因为建图初始帧,imu坐标系与 船舱两垂直侧壁和底面 构成的坐标系不是平行的。所以船舱结构俯视投影与grid map存在偏航角偏差。 我想消除上述的偏差,保持建图过程中,船舱俯视投影与grid map能够水平对齐。我应该如何去做呢? 我能想到的时,在建图初始时刻,保持雷达不动,利用实时的点云数据感知拟合船舱侧壁平面。选定船舱一角以及垂直侧面和舱底面作为坐标系。 计算出IMU坐标系相对于选定的船体坐标系的x y方向偏差,以及偏航角度偏差。 在计算出上述的偏差值之后,我应该将偏差值,写入point-lio源码的哪个位置呢? 下面的建图结束后得到的PCD: 2175_scans.png (view on web)https://github.com/user-attachments/assets/12991c92-87f6-4011-8dcd-ad1d10f1e3f3 问题二:生成的地图绕x和绕y方向存在3度以内的偏差 问题也是出在初始IMU上,初始点云转换成PCD后查看,就有倾斜的状态。但是无论我在yaml中 设置IMU是否与重力对齐(gravity_align: false 或者 true),都会有倾斜的情况出现。非静止起动情况下,IMU偏转更大,地图生成后偏差也更大。 这是bag数据初始7帧点云叠加的侧视图和正视图: 2175_first_7frames_left.png (view on web)https://github.com/user-attachments/assets/f07ce207-5789-431b-a89f-e998e3063818 2175_first_7frames_front.png (view on web)https://github.com/user-attachments/assets/9d057404-f618-46ca-a382-4d77a9b8d8dc 针对上述的两个问题,您可以帮忙分析一下问题的本质原因和我想的是一样的吗?可以提供一些解决方案嘛? ― Reply to this email directly, view it on GitHub<#92 (comment)>, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ANJUIXVC5NZM4A2GGEAOTP3ZMCXYTAVCNFSM6AAAAABKZ3ACF6VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDEMRWG43TGMZXGQ. You are receiving this because you are subscribed to this thread.Message ID: @.>
谢谢作者!我把lidar_type改为 1 了,后续接收点云会继续使用livox_ros_driver2/CustomMsg格式的。我也通过向别人请教解决了地图倾斜的问题。再次感谢作者优秀的开源工作!!