- final repo merged 1/03/24
- missing dataset--> to be added soon
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
pip install jaxlie jax==0.3.4
- jaxlib
pip install https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.3.2+cuda11.cudnn82-cp38-none-manylinux2010_x86_64.whl
- numpy==1.22.3
- scipy==1.8.0
- pyquaternion
- tqdm
Clone the repo and follow the instructions. For linux installation, you need to install clang:
sudo apt-get install clang
In order to let CMAKE use it as compiler, you should export the CMAKE_CXX_COMPILER environment variable in this way:
export CMAKE_CXX_COMPILER=/usr/bin/clang
sudo apt-get install libxxf86vm-dev
git clone https://github.com/hsp-iit/multi-tactile-6d-estimation.git
cd multi-tactile-6d-estimation
Then, you need to compile the collision detection code.
cd physX
mkdir build
To compile the code, you need to set in the CMakeLists.txt file the absolute path to PhysX/physx you compiled in the first step.
cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug "-GUnix Makefiles" -DCMAKE_CXX_FLAGS=-Wno-restrict -Wno-class-memaccess
sed -e s/-Werror//g -i /home/user/multi-tactile-6d-estimation/physX/build/externals/physx/sdk_source_bin/CMakeFiles/PhysXExtensions.dir/flags.make
make
cd multi-tactile-6d-estimation
apt install git-lfs
git lfs install
git clone https://huggingface.co/gabrielecaddeo/tactile-autoencoder
You need to build the image provided in docker folder by running
cd docker
bash run.sh
To reproduce the experiments, you need to run
cd multi-tactile-6d-estimation/optimization
bash run.sh /path/to/multi-tactile-6d-estimation /path/to/multi-tactile-6d-estimation/tactile-autoencoder/weights/model_real_back_norm.pth
You will find the table_all_objects.tex in results_directory_pose_estimation directory
The rotation metrics' results are expected to be slightly better than those presented in the paper, attributed to a minor error in the final_results.py file
@INPROCEEDINGS{10160359,
author={Caddeo, Gabriele M. and Piga, Nicola A. and Bottarel, Fabrizio and Natale, Lorenzo},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
title={Collision-aware In-hand 6D Object Pose Estimation using Multiple Vision-based Tactile Sensors},
year={2023},
volume={},
number={},
pages={719-725},
doi={10.1109/ICRA48891.2023.10160359}}
This repository is maintained by:
@gabrielecaddeo |