/DAEFormer

DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation - MICCAI 2023 PRIME Workshop

Primary LanguagePythonMIT LicenseMIT

DAEFormer

The official code for "DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation".

Proposed Model

Updates

  • 29 Dec., 2022: Initial release with arXiv.
  • 27 Dec., 2022: Submitted to MIDL 2023 [Under Review].

Citation

@article{azad2022daeformer,
  title={DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation},
  author={Azad, Reza and Arimond, René and Aghdam, Ehsan Khodapanah and Kazerouni, Amirhosein and Merhof, Dorit},
  journal={arXiv preprint arXiv:2212.13504},
  year={2022}
}

How to use

The script train.py contains all the necessary steps for training the network. A list and dataloader for the Synapse dataset are also included. To load a network, use the --module argument when running the train script (--module <directory>.<module_name>.<class_name>, e.g. --module networks.DAEFormer.DAEFormer)

Model weights

You can download the learned weights of the DAEFormer in the following table.

Task Dataset Learned weights
Multi organ segmentation Synapse DAE-Former

Training and Testing

  1. Download the Synapse dataset from here.

  2. Run the following code to install the Requirements.

    pip install -r requirements.txt

  3. Run the below code to train the DAEFormer on the synapse dataset.

    python train.py --root_path ./data/Synapse/train_npz --test_path ./data/Synapse/test_vol_h5 --batch_size 20 --eval_interval 20 --max_epochs 400 --module networks.DAEFormer.DAEFormer

    --root_path [Train data path]

    --test_path [Test data path]

    --eval_interval [Evaluation epoch]

    --module [Module name, including path (can also train your own models)]

  4. Run the below code to test the DAEFormer on the synapse dataset.

    python test.py --volume_path ./data/Synapse/ --output_dir './model_out'

    --volume_path [Root dir of the test data]

    --output_dir [Directory of your learned weights]

Results

Performance comparision on Synapse Multi-Organ Segmentation dataset.

synapse_results

Query

All implementation done by Rene Arimond. For any query please contact us for more information.

rene.arimond@lfb.rwth-aachen.de