DAEFormer
The official code for "DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation".
Updates
- 29 Dec., 2022: Initial release with arXiv.
- 27 Dec., 2022: Submitted to MIDL 2023 [Under Review].
Citation
@article{azad2022daeformer,
title={DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation},
author={Azad, Reza and Arimond, René and Aghdam, Ehsan Khodapanah and Kazerouni, Amirhosein and Merhof, Dorit},
journal={arXiv preprint arXiv:2212.13504},
year={2022}
}
How to use
The script train.py contains all the necessary steps for training the network. A list and dataloader for the Synapse dataset are also included.
To load a network, use the --module argument when running the train script (--module <directory>.<module_name>.<class_name>
, e.g. --module networks.DAEFormer.DAEFormer
)
Model weights
You can download the learned weights of the DAEFormer in the following table.
Task | Dataset | Learned weights |
---|---|---|
Multi organ segmentation | Synapse | DAE-Former |
Training and Testing
-
Download the Synapse dataset from here.
-
Run the following code to install the Requirements.
pip install -r requirements.txt
-
Run the below code to train the DAEFormer on the synapse dataset.
python train.py --root_path ./data/Synapse/train_npz --test_path ./data/Synapse/test_vol_h5 --batch_size 20 --eval_interval 20 --max_epochs 400 --module networks.DAEFormer.DAEFormer
--root_path [Train data path]
--test_path [Test data path]
--eval_interval [Evaluation epoch]
--module [Module name, including path (can also train your own models)]
-
Run the below code to test the DAEFormer on the synapse dataset.
python test.py --volume_path ./data/Synapse/ --output_dir './model_out'
--volume_path [Root dir of the test data]
--output_dir [Directory of your learned weights]
Results
Performance comparision on Synapse Multi-Organ Segmentation dataset.
Query
All implementation done by Rene Arimond. For any query please contact us for more information.
rene.arimond@lfb.rwth-aachen.de