A Deep Reinforcement Learning Framework (simulation) with OpenAI-Gym and PyBullet Environment for the 7-DOF manipulator downscale version from Robotory - SKKU
- OpenAI Gym: https://github.com/openai/gym
- PyBullet: https://github.com/bulletphysics/bullet3
- Virtualenv or Anaconda: https://phoenixnap.com/kb/how-to-install-anaconda-ubuntu-18-04-or-20-04
There are 2 method for installing our Deep RL OpenAI Gym environment
- Download gym-robotorydownscale
- Move to this folder and:
pip3 install gym-robotorydownscale
git clone https://github.com/shinhoang88/gym-robotorydownscale.git
cd gym-robotorydownscale
pip3 install -e .
git clone https://github.com/shinhoang88/downscale.git
sudo cp -r /home/username/downscale/ /home/username/rospython3_ws/rospy3env/lib/python3.6/site-packages/pybullet_data/
import gym
import gym_robotorydownscale
import pybullet as p
import pybullet_data
# Initialize the OpenAI Gym environment
env = gym.make('robotorydownscale-v0')
for i_episode in range(20):
# Reset the environment
observation = env.reset()
for t in range(18000):
# Stochastic action sample inside the action_space box
action = env.action_space.sample()
# Getting info from environment step simulation
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t + 1))
break
env.close()
- Author : Phi Tien Hoang
- E-mail : phitien@skku.edu
- Organization : Robotory-SKKU-S.Korea