/U6DA

official Pytorch implementation of paper 'Adversarial samples for deep monocular 6D object pose estimation'

MIT LicenseMIT

U6DA

official Pytorch implementation of paper 'Adversarial samples for deep monocular 6D object pose estimation'

U6DA-Linemod

The dataset can be download from Google Drive and Baidu Pan (code: jcfm)

After download and unzip, back up the original data first, then:

cp ape/* lm/test/000001/rgb/
cp benchvise/* lm/test/000002/rgb/
cp cam/* lm/test/000004/rgb/
cp can/* lm/test/000005/rgb/
cp cat/* lm/test/000006/rgb/
cp driller/* lm/test/000008/rgb/
cp duck/* lm/test/000009/rgb/
cp eggbox/* lm/test/000010/rgb/
cp glue/* lm/test/000011/rgb/
cp holepuncher/* lm/test/000012/rgb/
cp iron/* lm/test/000013/rgb/
cp lamp/* lm/test/000014/rgb/
cp phone/* lm/test/000015/rgb/
  • Our codes coming soon!

Citation

if you find our work useful in your research, please consider citing:

@article{zhang2022adversarial,
  title={Adversarial samples for deep monocular 6D object pose estimation},
  author={Zhang, Jinlai and Li, Weiming and Liang, Shuang and Wang, Hao and Zhu, Jihong},
  journal={arXiv preprint arXiv:2203.00302},
  year={2022}
}