- This repository containts the code for interactive crowd simulator used in the IROS 2020 paper "L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation"
- The original RVO implementation is the folk of Python bindings for Optimal Reciprocal Collision Avoidance.
- CMake
3.1+
- Cython
0.21.1+
$ pip install -r requirements.txt
$ python setup.py build # build
$ python setup.py install # build & install
- For more details, see
example_ervo.py
# original RVO
sim_rvo = rvo2.PyRVOSimulator(time_step, *params, radius, max_speed)
sim_rvo.doStep()
# extended ERVO
sim_ervo = rvo2.PyERVOSimulator(time_step, *params, radius, max_speed)
sim_ervo.doStep((beep_agent.px, beep_agent.py), beep_radius)
If you find the simulator useful for your research, please consider citing:
@inproceedings{nishimura2020l2b,
title={L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation},
author={Nishimura, Mai and Yonetani, Ryo},
journal={IEEE/RSJ International Conference on Intelligent Robots and Systems},
year={2020},
publisher={IEEE}
}
@incollection{van2011reciprocal,
title={Reciprocal n-body collision avoidance},
author={Van Den Berg, Jur and Guy, Stephen J and Lin, Ming and Manocha, Dinesh},
booktitle={Robotics research},
pages={3--19},
year={2011},
publisher={Springer}
}