Stitchsong's Stars
xmu-xiaoma666/External-Attention-pytorch
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
cmhungsteve/Awesome-Transformer-Attention
An ultimately comprehensive paper list of Vision Transformer/Attention, including papers, codes, and related websites
jeinlee1991/chinese-llm-benchmark
中文大模型能力评测榜单:目前已囊括134个大模型,覆盖chatgpt、gpt-4o、谷歌gemini、百度文心一言、阿里通义千问、百川、讯飞星火、商汤senseChat、minimax等商用模型, 以及deepseek-v2.5、qwen2.5、llama3.1、glm4、书生internLM2.5、openbuddy、AquilaChat等开源大模型。不仅提供能力评分排行榜,也提供所有模型的原始输出结果!
frgfm/torch-cam
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)
TACJu/TransFG
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).
pmqs/Fix-OneDrive-Zip
Fix OneDrive Zip files >4Gig
grip-unina/DMimageDetection
On the detection of synthetic images generated by diffusion models
SunnyHaze/IML-ViT
Official repository of paper “IML-ViT: Benchmarking Image manipulation localization by Vision Transformer”
NiFangBaAGe/Explicit-Visual-Prompt
[CVPR 2023] Explicit Visual Prompting for Low-Level Structure Segmentations
chou141253/FGVC-PIM
Pytorch implementation for "A Novel Plug-in Module for Fine-Grained Visual Classification". fine-grained visual classification task.
raoyongming/CAL
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification
grip-unina/TruFor
TruFor
chail/patch-forensics
Investigating patches for fake image classification
grip-unina/noiseprint
Noiseprint, a CNN-based camera model fingerprint
chou141253/FGVC-HERBS
Pytorch implementation of "Fine-grained Visual Classification with High-temperature Refinement and Background Suppression"
jonasricker/diffusion-model-deepfake-detection
[VISAPP2024] Towards the Detection of Diffusion Model Deepfakes
chuangchuangtan/LGrad
Code for the paper: Learning on Gradients: Generalized Artifacts Representation for GAN-Generated Images Detection
JayQine/AMR
Dichao-Liu/CMAL
shanface33/AutoSplice_Dataset
AutoSplice: A Text-prompt Manipulated Image Dataset for Media Forensics, WMF@CVPR2023
Knightzjz/NCL-IML
Offical implement of NCL-IML (Pre-training-free Image Manipulation Localization through Non-Mutually Contrastive Learning), ICCV2023
mobulan/IELT
Source code of the paper Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
SSAW14/BeyondtheSpectrum
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"
grip-unina/SyntheticImagesAnalysis
Synthetic Images Analysis
SunnyHaze/CASIA2.0-Corrected-Groundtruth
Resolves severe noise in the widely spread CASIA2.0 dataset ground-truth for Image Manipulation Detection
Sergo2020/DIF_pytorch_official
Official Implementation of Deep Image Fingerprint: Accurate And Low Budget Synthetic Image Detector
seukgcode/IncDE
[AAAI 2024] Towards Continual Knowledge Graph Embedding via Incremental Distillation
seukgcode/IterDE
[AAAI 2023] IterDE: An Iterative Knowledge Distillation Framework for Knowledge Graph Embeddings
DSLJDI/NIST16-data-set-deduplication
Olivia-account/Poverty-Level-Prediction-Project-with-Random-Forest-and-Decision-Trees
本项目旨在通过先进的数据分析和机器学习技术,对哥斯达黎加的家庭信息数据进行深度分析,以科学、精准地预测家庭的贫困程度。项目的核心目标是识别出最脆弱的家庭,以便政府和社会组织能更有针对性地提供援助,从而有效改善这些家庭的生活状况,并优化社会援助资源的分配。 通过随机森林和决策树等机器学习模型的应用,本项目开发了一个贫困预测系统。系统首先对原始数据集进行了详细的预处理和特征工程,包括缺失值处理、统计汇总与可视化以及新特征的创建和选择。然后,利用交叉验证和模型评估策略,精选出影响贫困程度的关键特征,并通过准确率等指标评估了模型的性能。最终,决策树模型以其高准确率被选为最优模型,用于实际的贫困预测任务。