/Generic-Robot-Design-Simulation-and-Control

CAD Design (Fusion360/Solidworks), 3D printing and programming of a generic robot (4R, 3R, ...) in simulation (Pybullet) and in real (Myactuator CAN Bus Protocol)

Primary LanguagePython

Generic Robot Design, Simulation and Control

This program provides functionalities for controlling robotic arms in simulation environments. It allows you to simulate, model, and control robot movements for various applications.

Installation

To run this program, you need Python installed on your system. Additionally, make sure you have the following dependencies installed:

  • numpy
  • time
  • pybullet
  • matplotlib
  • GsUsb

Usage

The program offers different functionalities for robot control, which are described below:

1. Using a PyBullet Robot (Simulation)

To use a PyBullet robot, follow these steps:

# Uncomment the following lines to use a PyBullet robot
# robot = Robot()
# robot.launch_URDF_simulation("kuka_iiwa/model.urdf", startPos=[0,0,0], fixedBase=True)
# robot.simulate.view_mode()

2. Design Your Own Robot Using DHM Parameters (Simulation)

You can design your own robot using DHM parameters. Here's an example for a 4R robot:

# Example: 4R Robot
# robot = Robot(joint_types=[REVOLUTE, REVOLUTE, REVOLUTE, REVOLUTE],
#               a=[0, 2, 1.5, 1],
#               alpha=[np.pi/2, 0, 0, 0],
#               d=[1, 0, 0, 0],
#               theta=[np.pi/2, 0, 0, 0])
# robot.create_simplified_URDF_based_on_DHM_parameters()
# robot.launch_URDF_simulation("outfile.urdf", startPos=[0,0,0.2], fixedBase=True)
# robot.simulate.view_mode()

3. Verify Your Modelisation (Simulation)

You can verify your model by visualizing joint and link frames:

# Uncomment and modify as needed
# robot = Robot()
# robot.launch_URDF_simulation("./scara2/urdf/scara2.urdf", startPos=[0,0,0], fixedBase=True)
# robot.simulate.set_endEffector_frame_offset(0.0,0.0,-0.111)
# robot.simulate.view_all_joint_frames()
# robot.simulate.view_all_link_frames()
# robot.simulate.view_endEffector_frame()
# robot.simulate.view_mode()

4. Position Joint Control (Simulation)

Control the robot's joints to achieve desired positions:

# Uncomment and modify as needed
# robot = Robot(joint_distances=[0.2,0.15,0.127,0.111])
# robot.launch_URDF_simulation("./scara2/urdf/scara2.urdf", startPos=[0,0,0], fixedBase=True)
# robot.simulate.move_joint(joint_index=1, displacement=0.2555, max_speed=0.2, torque=100, acceptable_error=1E-5, wait_to_exit=True, plot_joint_positions=False)
# Add more move_joint commands as required

5. Position Robot Control (Simulation) Using Your Modelisation

Control the robot's position using your model:

# Uncomment and modify as needed
robot = Robot(joint_distances=[0.2,0.15,0.127,0.111])
robot.launch_URDF_simulation("./scara2/urdf/scara2.urdf", startPos=[0,0,0], fixedBase=True)
# Add move_robot_position commands as required

6. Trajectory Robot Control (Simulation)

Control the robot's trajectory:

# Uncomment and modify as needed
# robot = Robot()
# robot.launch_URDF_simulation("./scara/urdf/scara.urdf", startPos=[0,0,0], fixedBase=True)
# robot.move_robot_moveit_trajectory("./Tools/trajectory.txt")

7. Real Robot Control

This part is currently under development and not ready for use.