facebookresearch/PoincareMaps
The need to understand cell developmental processes has spawned a plethora of computational methods for discovering hierarchies from scRNAseq data. However, existing techniques are based on Euclidean geometry which is not an optimal choice for modeling complex cell trajectories with multiple branches. To overcome this fundamental representation issue we propose Poincaré maps, a method harnessing the power of hyperbolic geometry into the realm of single-cell data analysis.
HTMLNOASSERTION
Stargazers
- AndrewDotson
- BryanMcd
- carriechen
- corridordigitalDecentralized
- DavidKo3Daejeon
- davidmaspUW
- demacdolincolnBrasil
- denisfitz57
- DevenLu
- drbecavin
- ebanigan
- eburlingPortland, OR
- evanbiederstedt
- fgypasBioinformatics Software Engineer at Novartis Institutes for BioMedical Research (NIBR)
- fly51flyPRIS
- GitHub30Osaka, Japan
- IgorSusmeljLightly
- jlevy44
- jmbreda
- mahossamLondon, United Kingdom
- omiethescientistAllen Institute
- petulla
- romanhaaAmsterdam, The Netherlands
- shajoezhuRoche
- slowkowMass General Brigham
- stjordanisGreece
- tkukurinCroatia
- trajanovFaculty of computer science and engineering
- tspbfs
- vickyrevNew York
- wgmueller1
- wudangtNope~
- YannickHauser
- ypencho
- zhang-jiankunPKU
- zie225France