Understanding of flight control systems, including dynamic models for UAVs, low level autopilot design, trajectory following, and path planning. The essential physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning will be explored. Rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. Files include simulation projects using the MATLAB/Simulink environment. Projects start from modeling rigid-body dynamics, then add aerodynamics and sensor models. Furthermore, low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms.
lamfur07/Flight-Dynamics-and-Control-UAVs
Understanding of flight control systems, including dynamic models for UAVs, low level autopilot design, trajectory following, and path planning. The essential physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning will be explored. Rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. Files include simulation projects using the MATLAB/Simulink environment. Projects start from modeling rigid-body dynamics, then add aerodynamics and sensor models. Furthermore, low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms.
MATLABGPL-3.0