/techniques

Techniques for deep learning with satellite & aerial imagery

Apache License 2.0Apache-2.0

Techniques for deep learning on satellite and aerial imagery.

Introduction

Deep learning has transformed the way satellite and aerial images are analyzed and interpreted. These images pose unique challenges, such as large sizes and diverse object classes, which offer opportunities for deep learning researchers. This repository offers a comprehensive overview of various deep learning techniques for analyzing satellite and aerial imagery, including architectures, models, and algorithms for tasks such as classification, segmentation, and object detection. It serves as a valuable resource for researchers, practitioners, and anyone interested in the latest advances in deep learning and its impact on computer vision and remote sensing.

How to use this repository: if you know exactly what you are looking for (e.g. you have the paper name) you can Control+F to search for it in this page (or search in the raw markdown). Note that material that is suitable for getting started with a topic is tagged with BEGINNER, which can also be searched.

Classification


The UC merced dataset is a well known classification dataset.

Classification is a fundamental task in remote sensing data analysis, where the goal is to assign a semantic label to each image, such as 'urban', 'forest', 'agricultural land', etc. The process of assigning labels to an image is known as image-level classification. However, in some cases, a single image might contain multiple different land cover types, such as a forest with a river running through it, or a city with both residential and commercial areas. In these cases, image-level classification becomes more complex and involves assigning multiple labels to a single image. This can be accomplished using a combination of feature extraction and machine learning algorithms to accurately identify the different land cover types. It is important to note that image-level classification should not be confused with pixel-level classification, also known as semantic segmentation. While image-level classification assigns a single label to an entire image, semantic segmentation assigns a label to each individual pixel in an image, resulting in a highly detailed and accurate representation of the land cover types in an image. Read A brief introduction to satellite image classification with neural networks

links

Segmentation


(left) a satellite image and (right) the semantic classes in the image.

Image segmentation is a crucial step in image analysis and computer vision, with the goal of dividing an image into semantically meaningful segments or regions. The process of image segmentation assigns a class label to each pixel in an image, effectively transforming an image from a 2D grid of pixels into a 2D grid of pixels with assigned class labels. One common application of image segmentation is road or building segmentation, where the goal is to identify and separate roads and buildings from other features within an image. To accomplish this task, single class models are often trained to differentiate between roads and background, or buildings and background. These models are designed to recognize specific features, such as color, texture, and shape, that are characteristic of roads or buildings, and use this information to assign class labels to the pixels in an image. Another common application of image segmentation is land use or crop type classification, where the goal is to identify and map different land cover types within an image. In this case, multi-class models are typically used to recognize and differentiate between multiple classes within an image, such as forests, urban areas, and agricultural land. These models are capable of recognizing complex relationships between different land cover types, allowing for a more comprehensive understanding of the image content. Read A brief introduction to satellite image segmentation with neural networks. Note that many articles which refer to 'hyperspectral land classification' are often actually describing semantic segmentation. Image source

links

Segmentation - Land use & land cover

Segmentation - Vegetation, crops & crop boundaries

Segmentation - Water, coastlines & floods

Segmentation - Fire, smoke & burn areas

Segmentation - Landslides

Segmentation - Glaciers

  • HED-UNet -> a model for simultaneous semantic segmentation and edge detection, examples provided are glacier fronts and building footprints using the Inria Aerial Image Labeling dataset
  • glacier_mapping -> Mapping glaciers in the Hindu Kush Himalaya, Landsat 7 images, Shapefile labels of the glaciers, Unet with dropout
  • glacier-detect-ML -> a simple logistic regression model to identify a glacier in Landsat satellite imagery
  • GlacierSemanticSegmentation -> uses unet
  • Antarctic-fracture-detection -> uses UNet with the MODIS Mosaic of Antarctica to detect surface fractures (paper)

Segmentation - Other environmental

Segmentation - Roads

Extracting roads is challenging due to the occlusions caused by other objects and the complex traffic environment

Segmentation - Buildings & rooftops

Segmentation - Solar panels

Segmentation - Other manmade

  • Aarsh2001/ML_Challenge_NRSC -> Electrical Substation detection
  • electrical_substation_detection -> using UNet, Albumentations for image augmentation, and OpenCV for computer vision tasks
  • PLGAN-for-Power-Line-Segmentation -> code for 2022 paper: PLGAN: Generative Adversarial Networks for Power-Line Segmentation in Aerial Images
  • MCAN-OilSpillDetection -> Oil Spill Detection with A Multiscale Conditional Adversarial Network under Small Data Training, with paper. A multiscale conditional adversarial network (MCAN) trained with four oil spill observation images accurately detects oil spills in new images.
  • plastics -> Detecting and Monitoring Plastic Waste Aggregations in Sentinel-2 Imagery for globalplasticwatch.org
  • mining-detector -> detection of artisanal gold mines in Sentinel-2 satellite imagery for Amazon Mining Watch. Also covers clandestine airstrips
  • EG-UNet code for 2023 paper: Deep Feature Enhancement Method for Land Cover With Irregular and Sparse Spatial Distribution Features: A Case Study on Open-Pit Mining

Instance segmentation

In instance segmentation, each individual 'instance' of a segmented area is given a unique lable. For detection of very small objects this may a good approach, but it can struggle seperating individual objects that are closely spaced.

Panoptic segmentation

Object detection


Image showing the suitability of rotated bounding boxes in remote sensing.

Object detection in remote sensing involves locating and surrounding objects of interest with bounding boxes. Due to the large size of remote sensing images and the fact that objects may only comprise a few pixels, object detection can be challenging in this context. The imbalance between the area of the objects to be detected and the background, combined with the potential for objects to be easily confused with random features in the background, further complicates the task. Object detection generally performs better on larger objects, but becomes increasingly difficult as the objects become smaller and more densely packed. The accuracy of object detection models can also degrade rapidly as image resolution decreases, which is why it is common to use high resolution imagery, such as 30cm RGB, for object detection in remote sensing. A unique characteristic of aerial images is that objects can be oriented in any direction. To effectively extract measurements of the length and width of an object, it can be crucial to use rotated bounding boxes that align with the orientation of the object. This approach enables more accurate and meaningful analysis of the objects within the image. Image source

links

Object detection with rotated bounding boxes

Orinted bounding boxes (OBB) are polygons representing rotated rectangles. For datasets checkout DOTA & HRSC2016

  • mmrotate -> Rotated Object Detection Benchmark, with pretrained models and function for inferencing on very large images
  • OBBDetection -> an oriented object detection library, which is based on MMdetection
  • rotate-yolov3 -> Rotation object detection implemented with yolov3. Also see yolov3-polygon
  • DRBox -> for detection tasks where the objects are orientated arbitrarily, e.g. vehicles, ships and airplanes
  • s2anet -> Official code of the paper 'Align Deep Features for Oriented Object Detection'
  • CFC-Net -> Official implementation of "CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images"
  • ReDet -> Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection"
  • BBAVectors-Oriented-Object-Detection -> Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors
  • CSL_RetinaNet_Tensorflow -> Code for ECCV 2020 paper: Arbitrary-Oriented Object Detection with Circular Smooth Label
  • r3det-on-mmdetection -> R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object
  • R-DFPN_FPN_Tensorflow -> Rotation Dense Feature Pyramid Networks (Tensorflow)
  • R2CNN_Faster-RCNN_Tensorflow -> Rotational region detection based on Faster-RCNN
  • Rotated-RetinaNet -> implemented in pytorch, it supports the following datasets: DOTA, HRSC2016, ICDAR2013, ICDAR2015, UCAS-AOD, NWPU VHR-10, VOC2007
  • OBBDet_Swin -> The sixth place winning solution in 2021 Gaofen Challenge
  • CG-Net -> Learning Calibrated-Guidance for Object Detection in Aerial Images. With paper
  • OrientedRepPoints_DOTA -> Oriented RepPoints + Swin Transformer/ReResNet
  • yolov5_obb -> yolov5 + Oriented Object Detection
  • How to Train YOLOv5 OBB -> YOLOv5 OBB tutorial and YOLOv5 OBB noteboook
  • OHDet_Tensorflow -> can be applied to rotation detection and object heading detection
  • Seodore -> framework maintaining recent updates of mmdetection
  • Rotation-RetinaNet-PyTorch -> oriented detector Rotation-RetinaNet implementation on Optical and SAR ship dataset
  • AIDet -> an open source object detection in aerial image toolbox based on MMDetection
  • rotation-yolov5 -> rotation detection based on yolov5
  • ShipDetection -> Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box, based on Faster R-CNN and ORN, uses caffe
  • SLRDet -> project based on mmdetection to reimplement RRPN and use the model Faster R-CNN OBB
  • AxisLearning -> code for 2020 paper: Axis Learning for Orientated Objects Detection in Aerial Images
  • Detection_and_Recognition_in_Remote_Sensing_Image -> This work uses PaNet to realize Detection and Recognition in Remote Sensing Image by MXNet
  • DrBox-v2-tensorflow -> tensorflow implementation of DrBox-v2 which is an improved detector with rotatable boxes for target detection in remote sensing images
  • Rotation-EfficientDet-D0 -> A PyTorch Implementation Rotation Detector based EfficientDet Detector, applied to custom rotation vehicle datasets
  • DODet -> Dual alignment for oriented object detection, uses DOTA dataset. With paper
  • GF-CSL -> code for 2022 paper: Gaussian Focal Loss: Learning Distribution Polarized Angle Prediction for Rotated Object Detection in Aerial Images
  • simplified_rbox_cnn -> code for 2018 paper: RBox-CNN: rotated bounding box based CNN for ship detection in remote sensing image. Uses Tensorflow object detection API
  • Polar-Encodings -> code for 2021 [paper](Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR Images)
  • R-CenterNet -> detector for rotated-object based on CenterNet
  • piou -> Orientated Object Detection; IoU Loss, applied to DOTA dataset
  • DAFNe -> code for 2021 paper: DAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection
  • AProNet -> code for 2021 paper: AProNet: Detecting objects with precise orientation from aerial images. Applied to datasets DOTA and HRSC2016
  • UCAS-AOD-benchmark -> A benchmark of UCAS-AOD dataset
  • RotateObjectDetection -> based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Also see PolygonObjectDetection
  • AD-Toolbox -> Aerial Detection Toolbox based on MMDetection and MMRotate, with support for more datasets
  • GGHL -> code for 2022 paper: A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection
  • NPMMR-Det -> code for 2021 paper: A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement Detector for Object Detection in Remote Sensing Images
  • AOPG -> code for 2022 paper: Anchor-Free Oriented Proposal Generator for Object Detection
  • SE2-Det -> code for 2022 paper: Semantic-Edge-Supervised Single-Stage Detector for Oriented Object Detection in Remote Sensing Imagery
  • OrientedRepPoints -> code for 2021 paper: Oriented RepPoints for Aerial Object Detection
  • TS-Conv -> code for 2022 paper: Task-wise Sampling Convolutions for Arbitrary-Oriented Object Detection in Aerial Images
  • FCOSR -> A Simple Anchor-free Rotated Detector for Aerial Object Detection. This implement is modified from mmdetection. See also TensorRT_Inference

Object detection enhanced by super resolution

Salient object detection

Detecting the most noticeable or important object in a scene

  • ACCoNet -> code for 2022 paper: Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
  • MCCNet -> Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images
  • CorrNet -> Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation. With paper
  • Reading list for deep learning based Salient Object Detection in Optical Remote Sensing Images
  • ORSSD-dataset -> salient object detection dataset
  • EORSSD-dataset -> Extended Optical Remote Sensing Saliency Detection (EORSSD) Dataset
  • DAFNet_TIP20 -> code for 2020 paper: Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
  • EMFINet -> code for 2021 paper: Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical Remote Sensing Images
  • ERPNet -> code for 2022 paper: Edge-guided Recurrent Positioning Network for Salient Object Detection in Optical Remote Sensing Images
  • FSMINet -> code for 2022 paper: Fully Squeezed Multi-Scale Inference Network for Fast and Accurate Saliency Detection in Optical Remote Sensing Images
  • AGNet -> code for 2022 paper: AGNet: Attention Guided Network for Salient Object Detection in Optical Remote Sensing Images
  • MSCNet -> code for 2022 paper: A lightweight multi-scale context network for salient object detection in optical remote sensing images
  • GPnet -> code for 2022 paper: Global Perception Network for Salient Object Detection in Remote Sensing Images
  • SeaNet -> code for 2023 paper: Lightweight Salient Object Detection in Optical Remote Sensing Images via Semantic Matching and Edge Alignment

Object detection - Buildings, rooftops & solar panels

Object detection - Ships & boats

Object detection - Cars, vehicles & trains

Object detection - Planes & aircraft

Object detection - Infrastructure & utilities

Object detection - Oil storage tank detection

Oil is stored in tanks at many points between extraction and sale, and the volume of oil in storage is an important economic indicator.

Object detection - Animals

A variety of techniques can be used to count animals, including object detection and instance segmentation. For convenience they are all listed here:

Object tracking in videos

Object counting

When the object count, but not its shape is required, U-net can be used to treat this as an image-to-image translation problem.

  • centroid-unet -> Centroid-UNet is deep neural network model to detect centroids from satellite images, with paper BEGINNER
  • cownter_strike -> counting cows, located with point-annotations, two models: CSRNet (a density-based method) & LCFCN (a detection-based method)
  • DO-U-Net -> an effective approach for when the size of an object needs to be known, as well as the number of objects in the image, initially created to segment and count Internally Displaced People (IDP) camps in Afghanistan
  • Cassava Crop Counting
  • Counting from Sky -> A Large-scale Dataset for Remote Sensing Object Counting and A Benchmark Method
  • PSGCNet -> code for 2022 paper: PSGCNet: A Pyramidal Scale and Global Context Guided Network for Dense Object Counting in Remote Sensing Images
  • psgcnet -> code for 2022 paper: PSGCNet: A Pyramidal Scale and Global Context Guided Network for Dense Object Counting in Remote-Sensing Images

Regression


Regression prediction of windspeed.

Regression in remote sensing involves predicting continuous variables such as wind speed, tree height, or soil moisture from an image. Both classical machine learning and deep learning approaches can be used to accomplish this task. Classical machine learning utilizes feature engineering to extract numerical values from the input data, which are then used as input for a regression algorithm like linear regression. On the other hand, deep learning typically employs a convolutional neural network (CNN) to process the image data, followed by a fully connected neural network (FCNN) for regression. The FCNN is trained to map the input image to the desired output, providing predictions for the continuous variables of interest. Image source

links

Cloud detection & removal


(left) False colour image and (right) a cloud & shadow mask.

Clouds are a major issue in remote sensing images as they can obscure the underlying ground features. This hinders the accuracy and effectiveness of remote sensing analysis, as the obscured regions cannot be properly interpreted. In order to address this challenge, various techniques have been developed to detect clouds in remote sensing images. Both classical algorithms and deep learning approaches can be employed for cloud detection. Classical algorithms typically use threshold-based techniques and hand-crafted features to identify cloud pixels. However, these techniques can be limited in their accuracy and are sensitive to changes in image appearance and cloud structure. On the other hand, deep learning approaches leverage the power of convolutional neural networks (CNNs) to accurately detect clouds in remote sensing images. These models are trained on large datasets of remote sensing images, allowing them to learn and generalize the unique features and patterns of clouds. The generated cloud mask can be used to identify the cloud pixels and eliminate them from further analysis or, alternatively, cloud inpainting techniques can be used to fill in the gaps left by the clouds. This approach helps to improve the accuracy of remote sensing analysis and provides a clearer view of the ground, even in the presence of clouds. Image adapted from this source

links

Change detection


(left) Initial and (middle) after some development, with (right) the change highlighted.

Change detection is a vital component of remote sensing analysis, enabling the monitoring of landscape changes over time. This technique can be applied to identify a wide range of changes, including land use changes, urban development, coastal erosion, and deforestation. Change detection can be performed on a pair of images taken at different times, or by analyzing multiple images collected over a period of time. It is important to note that while change detection is primarily used to detect changes in the landscape, it can also be influenced by the presence of clouds and shadows. These dynamic elements can alter the appearance of the image, leading to false positives in change detection results. Therefore, it is essential to consider the impact of clouds and shadows on change detection analysis, and to employ appropriate methods to mitigate their influence. Image source

links

  • awesome-remote-sensing-change-detection lists many datasets and publications
  • Change-Detection-Review -> A review of change detection methods, including code and open data sets for deep learning
  • Change Detection using Siamese Networks -> Medium article BEGINNER
  • STANet -> official implementation of the spatial-temporal attention neural network (STANet) for remote sensing image change detection BEGINNER
  • UNet-based-Unsupervised-Change-Detection -> A convolutional neural network (CNN) and semantic segmentation is implemented to detect the changes between the images, as well as classify the changes into the correct semantic class, with arxiv paper BEGINNER
  • BIT_CD -> Official Pytorch Implementation of Remote Sensing Image Change Detection with Transformers
  • Unstructured-change-detection-using-CNN
  • Siamese neural network to detect changes in aerial images -> uses Keras and VGG16 architecture
  • Change Detection in 3D: Generating Digital Elevation Models from Dove Imagery
  • QGIS plugin for applying change detection algorithms on high resolution satellite imagery
  • LamboiseNet -> Master thesis about change detection in satellite imagery using Deep Learning
  • Fully Convolutional Siamese Networks for Change Detection -> with paper
  • Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks -> with paper, used the Onera Satellite Change Detection (OSCD) dataset
  • IAug_CDNet -> Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images
  • dpm-rnn-public -> Code implementing a damage mapping method combining satellite data with deep learning
  • SenseEarth2020-ChangeDetection -> 1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime; predictions of five HRNet-based segmentation models are ensembled, serving as pseudo labels of unchanged areas
  • KPCAMNet -> Python implementation of the paper Unsupervised Change Detection in Multi-temporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network
  • CDLab -> benchmarking deep learning-based change detection methods.
  • Siam-NestedUNet -> The pytorch implementation for "SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images"
  • SUNet-change_detection -> Implementation of paper SUNet: Change Detection for Heterogeneous Remote Sensing Images from Satellite and UAV Using a Dual-Channel Fully Convolution Network
  • Self-supervised Change Detection in Multi-view Remote Sensing Images
  • MFPNet -> Remote Sensing Change Detection Based on Multidirectional Adaptive Feature Fusion and Perceptual Similarity
  • GitHub for the DIUx xView Detection Challenge -> The xView2 Challenge focuses on automating the process of assessing building damage after a natural disaster
  • DASNet -> Dual attentive fully convolutional siamese networks for change detection of high-resolution satellite images
  • Self-Attention for Raw Optical Satellite Time Series Classification
  • planet-movement -> Find and process Planet image pairs to highlight object movement
  • temporal-cluster-matching -> detecting change in structure footprints from time series of remotely sensed imagery
  • autoRIFT -> fast and intelligent algorithm for finding the pixel displacement between two images
  • DSAMNet -> Code for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”. The main types of changes in the dataset include: (a) newly built urban buildings; (b) suburban dilation; (c) groundwork before construction; (d) change of vegetation; (e) road expansion; (f) sea construction.
  • SRCDNet -> The pytorch implementation for "Super-resolution-based Change Detection Network with Stacked Attention Module for Images with Different Resolutions ". SRCDNet is designed to learn and predict change maps from bi-temporal images with different resolutions
  • Land-Cover-Analysis -> Land Cover Change Detection using Satellite Image Segmentation
  • A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images
  • Satellite-Image-Alignment-Differencing-and-Segmentation -> thesis on change detection
  • Change Detection in Multi-temporal Satellite Images -> uses Principal Component Analysis (PCA) and K-means clustering
  • Unsupervised Change Detection Algorithm using PCA and K-Means Clustering -> in Matlab but has paper
  • ChangeFormer -> A Transformer-Based Siamese Network for Change Detection. Uses transformer architecture to address the limitations of CNN in handling multi-scale long-range details. Demonstrates that ChangeFormer captures much finer details compared to the other SOTA methods, achieving better performance on benchmark datasets
  • Heterogeneous_CD -> Heterogeneous Change Detection in Remote Sensing Images. Accompanies Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images
  • ChangeDetectionProject -> Trying out Active Learning in with deep CNNs for Change detection on remote sensing data
  • DSFANet -> Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images
  • siamese-change-detection -> Targeted synthesis of multi-temporal remote sensing images for change detection using siamese neural networks
  • Bi-SRNet -> code for 2022 paper: Bi-Temporal Semantic Reasoning for the Semantic Change Detection in HR Remote Sensing Images
  • SiROC -> Implementation of the paper Spatial Context Awareness for Unsupervised Change Detection in Optical Satellite Images. Applied to Sentinel-2 and high-resolution Planetscope imagery on four datasets
  • DSMSCN -> Tensorflow implementation for Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Neural Networks
  • RaVAEn -> a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. It flags changed areas to prioritise for downlink, shortening the response time
  • SemiCD -> Code for paper: Revisiting Consistency Regularization for Semi-supervised Change Detection in Remote Sensing Images. Achieves the performance of supervised CD even with access to as little as 10% of the annotated training data
  • FCCDN_pytorch -> code for paper: FCCDN: Feature Constraint Network for VHR Image Change Detection. Uses the LEVIR-CD building change detection dataset
  • INLPG_Python -> code for paper: Structure Consistency based Graph for Unsupervised Change Detection with Homogeneous and Heterogeneous Remote Sensing Images
  • NSPG_Python -> code for paper: Nonlocal patch similarity based heterogeneous remote sensing change detection
  • LGPNet-BCD -> code for 2021 paper: Building Change Detection for VHR Remote Sensing Images via Local-Global Pyramid Network and Cross-Task Transfer Learning Strategy
  • DS_UNet -> code for 2021 paper: Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection using a Dual Stream U-Net, uses Onera Satellite Change Detection dataset
  • SiameseSSL -> code for 2022 paper: Urban change detection with a Dual-Task Siamese network and semi-supervised learning. Uses SpaceNet 7 dataset
  • CD-SOTA-methods -> Remote sensing change detection: State-of-the-art methods and available datasets
  • multimodalCD_ISPRS21 -> code for 2021 paper: Fusing Multi-modal Data for Supervised Change Detection
  • Unsupervised-CD-in-SITS-using-DL-and-Graphs -> code for article: Unsupervised Change Detection Analysis in Satellite Image Time Series using Deep Learning Combined with Graph-Based Approaches
  • LSNet -> code for 2022 paper: Extremely Light-Weight Siamese Network For Change Detection in Remote Sensing Image
  • Change-Detection-in-Remote-Sensing-Images -> using PCA & K-means
  • End-to-end-CD-for-VHR-satellite-image -> code for 2019 paper: End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++
  • Semantic-Change-Detection -> code for 2021 paper: SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery
  • ERCNN-DRS_urban_change_monitoring -> code for 2021 paper: Neural Network-Based Urban Change Monitoring with Deep-Temporal Multispectral and SAR Remote Sensing Data
  • EGRCNN -> code for 2021 paper: Edge-guided Recurrent Convolutional Neural Network for Multi-temporal Remote Sensing Image Building Change Detection
  • Unsupervised-Remote-Sensing-Change-Detection -> code for 2021 paper: An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning
  • CropLand-CD -> code for 2022 paper: A CNN-transformer Network with Multi-scale Context Aggregation for Fine-grained Cropland Change Detection
  • contrastive-surface-image-pretraining -> code for 2022 paper: Supervising Remote Sensing Change Detection Models with 3D Surface Semantics
  • dcvaVHROptical -> Deep Change Vector Analysis (DCVA) change detection. Code for 2019 paper: Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images
  • hyperdimensionalCD -> code for 2021 paper: Change Detection in Hyperdimensional Images Using Untrained Models
  • DSFANet -> code for 2018 paper: Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images
  • FCD-GAN-pytorch -> Fully Convolutional Change Detection Framework with Generative Adversarial Network (FCD-GAN) is a framework for change detection in multi-temporal remote sensing images
  • DARNet-CD -> code for 2022 paper: A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images
  • xView2_Vulcan -> Damage assessment using pre and post orthoimagery. Modified + productionized model based off the first-place model from the xView2 challenge.
  • ESCNet -> code for 2021 paper: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images
  • ForestCoverChange -> Detecting and Predicting Forest Cover Change in Pakistani Areas Using Remote Sensing Imagery
  • deforestation-detection -> code for 2020 paper: DEEP LEARNING FOR HIGH-FREQUENCY CHANGE DETECTION IN UKRAINIAN FOREST ECOSYSTEM WITH SENTINEL-2
  • forest_change_detection -> forest change segmentation with time-dependent models, including Siamese, UNet-LSTM, UNet-diff, UNet3D models. Code for 2021 paper: Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem With Sentinel-2
  • SentinelClearcutDetection -> Scripts for deforestation detection on the Sentinel-2 Level-A images
  • clearcut_detection -> research & web-service for clearcut detection
  • CDRL -> code for 2022 paper: Unsupervised Change Detection Based on Image Reconstruction Loss
  • ddpm-cd -> code for 2022 paper: Remote Sensing Change Detection (Segmentation) using Denoising Diffusion Probabilistic Models
  • Remote-sensing-time-series-change-detection -> code for 2022 paper: Graph-based block-level urban change detection using Sentinel-2 time series
  • austin-ml-change-detection-demo -> A change detection demo for the Austin area using a pre-trained PyTorch model scaled with Dask on Planet imagery
  • dfc2021-msd-baseline -> A baseline for the "Multitemporal Semantic Change Detection" track of the 2021 IEEE GRSS Data Fusion Competition
  • CorrFusionNet -> code for 2020 paper: Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion
  • ChangeDetectionPCAKmeans -> MATLAB implementation for Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering.
  • IRCNN -> code for 2022 paper: IRCNN: An Irregular-Time-Distanced Recurrent Convolutional Neural Network for Change Detection in Satellite Time Series
  • UTRNet -> An Unsupervised Time-Distance-Guided Convolutional Recurrent Network for Change Detection in Irregularly Collected Images
  • open-cd -> an open source change detection toolbox based on a series of open source general vision task tools
  • Tiny_model_4_CD -> code for 2022 paper: TINYCD: A (Not So) Deep Learning Model For Change Detection. Uses LEVIR-CD & WHU-CD datasets
  • FHD -> code for 2022 paper: Feature Hierarchical Differentiation for Remote Sensing Image Change Detection
  • Change detection with Raster Vision -> blog post with Colab notebook
  • building-expansion -> code for 2021 paper: Enhancing Environmental Enforcement with Near Real-Time Monitoring: Likelihood-Based Detection of Structural Expansion of Intensive Livestock Farms
  • SaDL_CD -> code for 2022 paper: Semantic-aware Dense Representation Learning for Remote Sensing Image Change Detection
  • EGCTNet_pytorch -> code for 2022 paper: Building Change Detection Based on an Edge-Guided Convolutional Neural Network Combined with a Transformer
  • S2-cGAN -> code for 2020 paper: S2-cGAN: Self-Supervised Adversarial Representation Learning for Binary Change Detection in Multispectral Images
  • A-loss-function-for-change-detection -> code for 2022 paper: UAL: Unchanged Area Loss-Function for Change Detection Networks
  • IEEE_TGRS_SSTFormer -> code for 2022 paper: Spectral–Spatial–Temporal Transformers for Hyperspectral Image Change Detection
  • DMINet -> code for 2023 paper: Change Detection on Remote Sensing Images Using Dual-Branch Multilevel Intertemporal Network
  • AFCF3D-Net -> code for 2023 paper: Adjacent-level Feature Cross-Fusion with 3D CNN for Remote Sensing Image Change Detection
  • DSAHRNet -> code for paper: A Deeply Attentive High-Resolution Network for Change Detection in Remote Sensing Images
  • RDPNet -> code for 2022 paper: RDP-Net: Region Detail Preserving Network for Change Detection
  • BGAAE_CD -> code for 2022 paper: Bipartite Graph Attention Autoencoders for Unsupervised Change Detection Using VHR Remote Sensing Images

Time series


Prediction of the next image in a series.

The analysis of time series observations in remote sensing data has numerous applications, including enhancing the accuracy of classification models and forecasting future patterns and events. Image source. Note: since classifying crops and predicting crop yield are such prominent use case for time series data, these tasks have dedicated sections after this one.

links

  • LANDSAT Time Series Analysis for Multi-temporal Land Cover Classification using Random Forest
  • temporalCNN -> Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series
  • pytorch-psetae -> code for the paper: Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention
  • satflow -> optical flow models for predicting future satellite images from current and past ones
  • esa-superresolution-forecasting -> Forecasting air pollution using ESA Sentinel-5p data, and an encoder-decoder convolutional LSTM neural network architecture, implemented in Pytorch
  • lightweight-temporal-attention-pytorch -> A PyTorch implementation of the Light Temporal Attention Encoder (L-TAE) for satellite image time series
  • dtwSat -> Time-Weighted Dynamic Time Warping for satellite image time series analysis
  • MTLCC -> code for paper: Multitemporal Land Cover Classification Network. A recurrent neural network approach to encode multi-temporal data for land cover classification
  • PWWB -> Code for the 2021 paper: Real-Time Spatiotemporal Air Pollution Prediction with Deep Convolutional LSTM through Satellite Image Analysis
  • spaceweather -> predicting geomagnetic storms from satellite measurements of the solar wind and solar corona, uses LSTMs
  • Forest_wildfire_spreading_convLSTM -> Modeling of the spreading of forest wildfire using a neural network with ConvLSTM cells. Prediction 3-days forward
  • ConvTimeLSTM -> Extension of ConvLSTM and Time-LSTM for irregularly spaced images, appropriate for Remote Sensing
  • dl-time-series -> Deep Learning algorithms applied to characterization of Remote Sensing time-series
  • tpe -> code for 2022 paper: Generalized Classification of Satellite Image Time Series With Thermal Positional Encoding
  • wildfire_forecasting -> code for 2021 paper: Deep Learning Methods for Daily Wildfire Danger Forecasting. Uses ConvLSTM
  • satellite_image_forecasting -> predict future satellite images from past ones using features such as precipitation and elevation maps. Entry for the EarthNet2021 challenge
  • Deep Learning for Cloud Gap-Filling on Normalized Difference Vegetation Index using Sentinel Time-Series -> A CNN-RNN based model that identifies correlations between optical and SAR data and exports dense Normalized Difference Vegetation Index (NDVI) time-series of a static 6-day time resolution and can be used for Events Detection tasks
  • DeepSatModels -> code for the 2023 paper: ViTs for SITS: Vision Transformers for Satellite Image Time Series

Crop classification


(left) false colour image and (right) the crop map.

Crop classification in remote sensing is the identification and mapping of different crops in images or sequences of images. It aims to provide insight into the distribution and composition of crops in a specific area, with applications that include monitoring crop growth and evaluating crop damage. Both traditional machine learning methods, such as decision trees and support vector machines, and deep learning techniques, such as convolutional neural networks (CNNs), can be used to perform crop classification. The optimal method depends on the size and complexity of the dataset, the desired accuracy, and the available computational resources. However, the success of crop classification relies heavily on the quality and resolution of the input data, as well as the availability of labeled training data. Image source.

links

  • Classification of Crop Fields through Satellite Image Time Series -> using a pytorch-psetae & Sentinel-2 data
  • CropDetectionDL -> using GRU-net, First place solution for Crop Detection from Satellite Imagery competition organized by CV4A workshop at ICLR 2020
  • Radiant-Earth-Spot-the-Crop-Challenge -> The main objective of this challenge was to use time-series of Sentinel-2 multi-spectral data to classify crops in the Western Cape of South Africa. The challenge was to build a machine learning model to predict crop type classes for the test dataset
  • Crop-Classification -> crop classification using multi temporal satellite images
  • DeepCropMapping -> A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping, uses LSTM
  • CropMappingInterpretation -> An interpretation pipeline towards understanding multi-temporal deep learning approaches for crop mapping
  • timematch -> code for 2022 paper: A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series. We also introduce an open-access dataset for cross-region adaptation with SITS from four different regions in Europe
  • elects -> code for 2022 paper: End-to-End Learned Early Classification of Time Series for In-Season Crop Type Mapping

Crop yield


Wheat yield data. Blue vertical lines denote observation dates.

Crop yield is a crucial metric in agriculture, as it determines the productivity and profitability of a farm. It is defined as the amount of crops produced per unit area of land and is influenced by a range of factors including soil fertility, weather conditions, the type of crop grown, and pest and disease control. By utilizing time series of satellite images, it is possible to perform accurate crop type classification and take advantage of the seasonal variations specific to certain crops. This information can be used to optimize crop management practices and ultimately improve crop yield. However, to achieve accurate results, it is essential to consider the quality and resolution of the input data, as well as the availability of labeled training data. Appropriate pre-processing and feature extraction techniques must also be employed. Image source.

links

Wealth and economic activity


COVID-19 impacts on human and economic activities.

The traditional approach of collecting economic data through ground surveys is a time-consuming and resource-intensive process. However, advancements in satellite technology and machine learning offer an alternative solution. By utilizing satellite imagery and applying machine learning algorithms, it is possible to obtain accurate and current information on economic activity with greater efficiency. This shift towards satellite imagery-based forecasting not only provides cost savings but also offers a wider and more comprehensive perspective of economic activity. As a result, it is poised to become a valuable asset for both policymakers and businesses. Image source.

links

Disaster response


Detecting buildings destroyed in a disaster.

Remote sensing images are used in disaster response to identify and assess damage to an area. This imagery can be used to detect buildings that are damaged or destroyed, identify roads and road networks that are blocked, determine the size and shape of a disaster area, and identify areas that are at risk of flooding. Remote sensing images can also be used to detect and monitor the spread of forest fires and monitor vegetation health. Also checkout the sections on change detection and water/fire/building segmentation. Image source.

links

Super-resolution


Super resolution using multiple low resolution images as input.

Super-resolution is a technique aimed at improving the resolution of an imaging system. This process can be applied prior to other image processing steps to increase the visibility of small objects or boundaries. Despite its potential benefits, the use of super-resolution is controversial due to the possibility of introducing artifacts that could be mistaken for real features. Super-resolution techniques are broadly categorized into two groups: single image super-resolution (SISR) and multi-image super-resolution (MISR). SISR focuses on enhancing the resolution of a single image, while MISR utilizes multiple images of the same scene to create a high-resolution output. Each approach has its own advantages and limitations, and the choice of method depends on the specific application and desired outcome. Image source.

links

Single image super-resolution (SISR)

Multi image super-resolution (MISR)

Note that nearly all the MISR publications resulted from the PROBA-V Super Resolution competition

  • deepsum -> Deep neural network for Super-resolution of Unregistered Multitemporal images (ESA PROBA-V challenge)
  • 3DWDSRNet -> code to reproduce Satellite Image Multi-Frame Super Resolution (MISR) Using 3D Wide-Activation Neural Networks
  • RAMS -> Official TensorFlow code for paper Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks
  • TR-MISR -> Transformer-based MISR framework for the the PROBA-V super-resolution challenge. With paper
  • HighRes-net -> Pytorch implementation of HighRes-net, a neural network for multi-frame super-resolution, trained and tested on the European Space Agency’s Kelvin competition
  • ProbaVref -> Repurposing the Proba-V challenge for reference-aware super resolution
  • The missing ingredient in deep multi-temporal satellite image super-resolution -> Permutation invariance harnesses the power of ensembles in a single model, with repo piunet
  • MSTT-STVSR -> Space-time Super-resolution for Satellite Video: A Joint Framework Based on Multi-Scale Spatial-Temporal Transformer, JAG, 2022
  • Self-Supervised Super-Resolution for Multi-Exposure Push-Frame Satellites
  • DDRN -> Deep Distillation Recursive Network for Video Satellite Imagery Super-Resolution
  • worldstrat -> SISR and MISR implementations of SRCNN
  • MISR-GRU -> Pytorch implementation of MISR-GRU, a deep neural network for multi image super-resolution (MISR), for ProbaV Super Resolution Competition

Pansharpening


Pansharpening example with a resolution difference of factor 4.

Pansharpening is a data fusion method that merges the high spatial detail from a high-resolution panchromatic image with the rich spectral information from a lower-resolution multispectral image. The result is a single, high-resolution color image that retains both the sharpness of the panchromatic band and the color information of the multispectral bands. This process enhances the spatial resolution while preserving the spectral qualities of the original images. Image source

links

  • Several algorithms described in the ArcGIS docs, with the simplest being taking the mean of the pan and RGB pixel value.
  • For into to classical methods see this notebook and this kaggle kernel
  • rio-pansharpen -> pansharpening Landsat scenes
  • Simple-Pansharpening-Algorithms
  • Working-For-Pansharpening -> long list of pansharpening methods and update of Awesome-Pansharpening
  • PSGAN -> A Generative Adversarial Network for Remote Sensing Image Pan-sharpening, arxiv paper
  • Pansharpening-by-Convolutional-Neural-Network
  • PBR_filter -> {P}ansharpening by {B}ackground {R}emoval algorithm for sharpening RGB images
  • py_pansharpening -> multiple algorithms implemented in python
  • Deep-Learning-PanSharpening -> deep-learning based pan-sharpening code package, we reimplemented include PNN, MSDCNN, PanNet, TFNet, SRPPNN, and our purposed network DIPNet
  • HyperTransformer -> A Textural and Spectral Feature Fusion Transformer for Pansharpening
  • DIP-HyperKite -> Hyperspectral Pansharpening Based on Improved Deep Image Prior and Residual Reconstruction
  • D2TNet -> code for 2022 paper: A ConvLSTM Network with Dual-direction Transfer for Pan-sharpening
  • PanColorGAN-VHR-Satellite-Images -> code for 2020 paper: Rethinking CNN-Based Pansharpening: Guided Colorization of Panchromatic Images via GANs
  • MTL_PAN_SEG -> code for 2019 paper: Multi-task deep learning for satellite image pansharpening and segmentation
  • Z-PNN -> code for 2022 paper: Pansharpening by convolutional neural networks in the full resolution framework
  • GTP-PNet -> code for 2021 paper: GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening
  • UDL -> code for 2021 paper: Dynamic Cross Feature Fusion for Remote Sensing Pansharpening
  • PSData -> A Large-Scale General Pan-sharpening DataSet, which contains PSData3 (QB, GF-2, WV-3) and PSData4 (QB, GF-1, GF-2, WV-2).
  • AFPN -> Adaptive Detail Injection-Based Feature Pyramid Network For Pan-sharpening
  • pan-sharpening -> multiple methods demonstrated for multispectral and panchromatic images
  • PSGan-Family -> code for 2020 paper: PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening
  • PanNet-Landsat -> code for 2017 paper: A Deep Network Architecture for Pan-Sharpening
  • DLPan-Toolbox -> code for 2022 paper: Machine Learning in Pansharpening: A Benchmark, from Shallow to Deep Networks
  • LPPN -> code for 2021 paper: Laplacian pyramid networks: A new approach for multispectral pansharpening
  • S2_SSC_CNN -> code for 2020 paper: Zero-shot Sentinel-2 Sharpening Using A Symmetric Skipped Connection Convolutional Neural Network
  • S2S_UCNN -> code for 2021 paper: Sentinel 2 sharpening using a single unsupervised convolutional neural network with MTF-Based degradation model
  • SSE-Net -> code for 2022 paper: Spatial and Spectral Extraction Network With Adaptive Feature Fusion for Pansharpening
  • UCGAN -> code for 2022 paper: Unsupervised Cycle-consistent Generative Adversarial Networks for Pan-sharpening
  • GCPNet -> code for 2022 paper: When Pansharpening Meets Graph Convolution Network and Knowledge Distillation
  • PanFormer -> code for 2022 paper: PanFormer: a Transformer Based Model for Pan-sharpening
  • Pansharpening -> code for 2021 paper: Pansformers: Transformer-Based Self-Attention Network for Pansharpening

Image-to-image translation


(left) Sentinel-1 SAR input, (middle) translated to RGB and (right) Sentinel-2 true RGB image for comparison.

Image-to-image translation is a crucial aspect of computer vision that utilizes machine learning models to transform an input image into a new, distinct output image. In the field of remote sensing, it plays a significant role in bridging the gap between different imaging domains, such as converting Synthetic Aperture Radar (SAR) images into RGB (Red Green Blue) images. This technology has a wide range of applications, including improving image quality, filling in missing information, and facilitating cross-domain image analysis and comparison. By leveraging deep learning algorithms, image-to-image translation has become a powerful tool in the arsenal of remote sensing researchers and practitioners. Image source

links

Data fusion


Illustration of a fusion workflow.

Data fusion is a technique for combining information from different sources such as Synthetic Aperture Radar (SAR), optical imagery, and non-imagery data such as Internet of Things (IoT) sensor data. The integration of diverse data sources enables data fusion to overcome the limitations of individual sources, leading to the creation of models that are more accurate and informative than those constructed from a single source. Image source

links

  • Awesome-Data-Fusion-for-Remote-Sensing
  • UDALN_GRSL -> Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
  • CropTypeMapping -> Crop type mapping from optical and radar (Sentinel-1&2) time series using attention-based deep learning
  • Multimodal-Remote-Sensing-Toolkit -> uses Hyperspectral and LiDAR Data
  • Aerial-Template-Matching -> development of an algorithm for template Matching on aerial imagery applied to UAV dataset
  • DS_UNet -> code for 2021 paper: Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection using a Dual Stream U-Net, uses Onera Satellite Change Detection dataset
  • DDA_UrbanExtraction -> Unsupervised Domain Adaptation for Global Urban Extraction using Sentinel-1 and Sentinel-2 Data
  • swinstfm -> code for paper: Remote Sensing Spatiotemporal Fusion using Swin Transformer
  • LoveCS -> code for 2022 paper: Cross-sensor domain adaptation for high-spatial resolution urban land-cover mapping: from airborne to spaceborne imagery
  • comingdowntoearth -> code for 2021 paper: Implementation of 'Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization'
  • Matching between acoustic and satellite images
  • MapRepair -> Deep Cadastre Maps Alignment and Temporal Inconsistencies Fix in Satellite Images
  • Compressive-Sensing-and-Deep-Learning-Framework -> Compressive Sensing is used as an initial guess to combine data from multiple sources, with LSTM used to refine the result
  • DeepSim -> code for paper: DeepSIM: GPS Spoofing Detection on UAVs using Satellite Imagery Matching
  • MHF-net -> code for 2019 paper: Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net
  • Remote_Sensing_Image_Fusion -> code for 2021 paper: Semi-Supervised Remote Sensing Image Fusion Using Multi-Scale Conditional Generative Adversarial network with Siamese Structure
  • CNNs for Multi-Source Remote Sensing Data Fusion -> code for 2021 paper: Single-stream CNN with Learnable Architecture for Multi-source Remote Sensing Data
  • Deep Generative Reflectance Fusion -> Achieving Landsat-like reflectance at any date by fusing Landsat and MODIS surface reflectance with deep generative models
  • IEEE_TGRS_MDL-RS -> code for 2021 paper: More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification
  • SSRNET -> code for 2022 paper: SSR-NET: Spatial-Spectral Reconstruction Network for Hyperspectral and Multispectral Image Fusion
  • cross-view-image-matching -> code for 2019 paper: Bridging the Domain Gap for Ground-to-Aerial Image Matching
  • CoF-MSMG-PCNN -> code for 2020 paper: Remote Sensing Image Fusion via Boundary Measured Dual-Channel PCNN in Multi-Scale Morphological Gradient Domain
  • robust_matching_network_on_remote_sensing_imagery_pytorch -> code for 2019 paper: A Robust Matching Network for Gradually Estimating Geometric Transformation on Remote Sensing Imagery
  • edcstfn -> code for 2019 paper: An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion
  • ganstfm -> code for 2021 paper: A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network
  • CMAFF -> code for 2021 paper: Cross-Modality Attentive Feature Fusion for Object Detection in Multispectral Remote Sensing Imagery
  • SOLC -> code for 2022 paper: MCANet: A joint semantic segmentation framework of optical and SAR images for land use classification. Uses WHU-OPT-SAR-dataset
  • MFT -> code for 2022 paper: Multimodal Fusion Transformer for Remote Sensing Image Classification
  • ISPRS_S2FL -> code for 2021 paper: Multimodal Remote Sensing Benchmark Datasets for Land Cover Classification with A Shared and Specific Feature Learning Model
  • HSHT-Satellite-Imagery-Synthesis -> code for thesis - Improving Flood Maps by Increasing the Temporal Resolution of Satellites Using Hybrid Sensor Fusion
  • MDC -> code for 2021 paper: Unsupervised Data Fusion With Deeper Perspective: A Novel Multisensor Deep Clustering Algorithm
  • FusAtNet -> code for 2020 paper: FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification
  • AMM-FuseNet -> code for 2022 paper: AMM-FuseNet: Attention-Based Multi-Modal Image Fusion Network for Land Cover Mapping
  • MANet -> code for 2022 paper: MANet: A Network Architecture for Remote Sensing Spatiotemporal Fusion Based on Multiscale and Attention Mechanisms
  • DCSA-Net -> code for 2022 paper: Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images
  • deforestation-from-data-fusion -> Fusing Sentinel-1 and Sentinel-2 images for deforestation detection in the Brazilian Amazon under diverse cloud conditions

Generative Adversarial Networks (GANs)


Example generated images using a GAN.

Generative Adversarial Networks (GANs) are a type of deep learning architecture that leverages the power of competition between two neural networks. The objective of a GAN is to generate new, synthetic data that appears similar to real-world data. This is achieved by training the two networks, the generator and the discriminator, in a zero-sum game, where the generator attempts to produce data that is indistinguishable from the real data, while the discriminator tries to distinguish between the generated data and the real data. In the field of remote sensing, GANs have found numerous applications, particularly in generating synthetic data. This synthetic data can be used for a wide range of purposes, including data augmentation, data imbalance correction, and filling in missing or corrupted data. By generating realistic synthetic data, GANs can improve the performance of remote sensing algorithms and models, leading to more accurate and reliable results. Additionally, GANs can also be used for various other tasks in remote sensing, such as super-resolution, denoising, and inpainting. Image source

links

Autoencoders, dimensionality reduction, image embeddings & similarity search


Example of using an autoencoder to create a low dimensional representation of hyperspectral data.

Autoencoders are a type of neural network that aim to simplify the representation of input data by compressing it into a lower dimensional form. This is achieved through a two-step process of encoding and decoding, where the encoding step compresses the data into a lower dimensional representation, and the decoding step restores the data back to its original form. The goal of this process is to reduce the data's dimensionality, making it easier to store and process, while retaining the essential information. Dimensionality reduction, as the name suggests, refers to the process of reducing the number of dimensions in a dataset. This can be achieved through various techniques such as principal component analysis (PCA) or singular value decomposition (SVD). Autoencoders are one type of neural network that can be used for dimensionality reduction. In the field of computer vision, image embeddings are vector representations of images that capture the most important features of the image. These embeddings can then be used to perform similarity searches, where images are compared based on their features to find similar images. This process can be used in a variety of applications, such as image retrieval, where images are searched based on certain criteria like color, texture, or shape. It can also be used to identify duplicate images in a dataset. Image source

links

Image retrieval


Illustration of the remote sensing image retrieval process.

Image retrieval is the task of retrieving images from a collection that are similar to a query image. Image retrieval plays a vital role in remote sensing by enabling the efficient and effective search for relevant images from large image archives, and by providing a way to quantify changes in the environment over time. Image source

links

  • Demo_AHCL_for_TGRS2022 -> code for 2022 paper: Asymmetric Hash Code Learning (AHCL) for remote sensing image retrieval
  • GaLR -> code for 2022 paper: Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and Local Information
  • retrievalSystem -> cross-modal image retrieval system
  • AMFMN -> code for the 2021 paper: Exploring a Fine-grained Multiscale Method for Cross-modal Remote Sensing Image Retrieval
  • Active-Learning-for-Remote-Sensing-Image-Retrieval -> unofficial implementation of paper: A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval
  • CMIR-NET -> code for 2020 paper: A deep learning based model for cross-modal retrieval in remote sensing
  • Deep-Hash-learning-for-Remote-Sensing-Image-Retrieval -> code for 2020 paper: Deep Hash Learning for Remote Sensing Image Retrieval
  • MHCLN -> code for 2018 paper: Deep Metric and Hash-Code Learning for Content-Based Retrieval of Remote Sensing Images
  • HydroViet_VOR -> Object Retrieval in satellite images with Triplet Network
  • AMFMN -> code for 2021 paper: Exploring a Fine-Grained Multiscale Method for Cross-Modal Remote Sensing Image Retrieval

Image Captioning


Example captioned image.

Image Captioning is the task of automatically generating a textual description of an image. In remote sensing, image captioning can be used to automatically generate captions for satellite or aerial images, which can be useful for a variety of purposes, such as image search and retrieval, data cataloging, and data dissemination. The generated captions can provide valuable information about the content of the images, including the location, the type of terrain or objects present, and the weather conditions, among others. This information can be used to quickly and easily understand the content of the images, without having to manually examine each image. Image source

links

Visual Question Answering

Visual Question Answering (VQA) is the task of automatically answering a natural language question about an image. In remote sensing, VQA enables users to interact with the images and retrieve information using natural language questions. For example, a user could ask a VQA system questions such as "What is the type of land cover in this area?", "What is the dominant crop in this region?" or "What is the size of the city in this image?". The system would then analyze the image and generate an answer based on its understanding of the image content.

links

  • VQA-easy2hard -> code for 2022 paper: From Easy to Hard: Learning Language-guided Curriculum for Visual Question Answering on Remote Sensing Data

Mixed data learning

Mixed data learning is the process of learning from datasets that may contain an mix of images, textual and numeric data. Mixed data learning can help improve the accuracy of models by allowing them to learn from multiple sources at once and use more sophisticated methods to identify patterns and correlations.

links

Few-shot learning

This is a class of techniques which attempt to make predictions for classes with few, one or even zero examples provided during training. In zero shot learning (ZSL) the model is assisted by the provision of auxiliary information which typically consists of descriptions/semantic attributes/word embeddings for both the seen and unseen classes at train time (ref). These approaches are particularly relevant to remote sensing, where there may be many examples of common classes, but few or even zero examples for other classes of interest.

links

Self-supervised, unsupervised & contrastive learning

Self-supervised, unsupervised & contrastive learning are all methods of machine learning that use unlabeled data to train algorithms. Self-supervised learning uses labeled data to create an artificial supervisor, while unsupervised learning uses only the data itself to identify patterns and similarities. Contrastive learning uses pairs of data points to learn representations of data, usually for classification tasks.

links

Weakly & semi-supervised learning

Weakly & semi-supervised learning are two methods of machine learning that use both labeled and unlabeled data for training. Weakly supervised learning uses weakly labeled data, which may be incomplete or inaccurate, while semi-supervised learning uses both labeled and unlabeled data. Weakly supervised learning is typically used in situations where labeled data is scarce and unlabeled data is abundant. Semi-supervised learning is typically used in situations where labeled data is abundant but also contains some noise or errors. Both techniques can be used to improve the accuracy of machine learning models by making use of additional data sources.

links

  • MARE -> self-supervised Multi-Attention REsu-net for semantic segmentation in remote sensing
  • SSGF-for-HRRS-scene-classification -> code for 2018 paper: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  • SFGAN -> code for 2018 paper: Semantic-Fusion Gans for Semi-Supervised Satellite Image Classification
  • SSDAN -> code for 2021 paper: Multi-Source Semi-Supervised Domain Adaptation Network for Remote Sensing Scene Classification
  • HR-S2DML -> code for 2020 paper: High-Rankness Regularized Semi-Supervised Deep Metric Learning for Remote Sensing Imagery
  • Semantic Segmentation of Satellite Images Using Point Supervision
  • fcd -> code for 2021 paper: Fixed-Point GAN for Cloud Detection. A weakly-supervised approach, training with only image-level labels
  • weak-segmentation -> Weakly supervised semantic segmentation for aerial images in pytorch
  • TNNLS_2022_X-GPN -> Code for paper: Semisupervised Cross-scale Graph Prototypical Network for Hyperspectral Image Classification
  • weakly_supervised -> code for the paper Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery. Demonstrates that segmentation can be performed using small datasets comprised of pixel or image labels
  • wan -> Weakly-Supervised Domain Adaptation for Built-up Region Segmentation in Aerial and Satellite Imagery, with arxiv paper
  • sourcerer -> A Bayesian-inspired deep learning method for semi-supervised domain adaptation designed for land cover mapping from satellite image time series (SITS). Paper
  • MSMatch -> Semi-Supervised Multispectral Scene Classification with Few Labels. Includes code to work with both the RGB and the multispectral (MS) versions of EuroSAT dataset and the UC Merced Land Use (UCM) dataset. Paper
  • Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning with arxiv paper
  • Semi-supervised learning in satellite image classification -> experimenting with MixMatch and the EuroSAT data set
  • ScRoadExtractor -> code for 2020 paper: Scribble-based Weakly Supervised Deep Learning for Road Surface Extraction from Remote Sensing Images
  • ICSS -> code for 2022 paper: Weakly-supervised continual learning for class-incremental segmentation
  • es-CP -> code for 2022 paper: Semi-Supervised Hyperspectral Image Classification Using a Probabilistic Pseudo-Label Generation Framework
  • Flood_Mapping_SSL -> code for 2022 paper: Enhancement of Urban Floodwater Mapping From Aerial Imagery With Dense Shadows via Semisupervised Learning

Active learning

Supervised deep learning techniques typically require a huge number of annotated/labelled examples to provide a training dataset. However labelling at scale take significant time, expertise and resources. Active learning techniques aim to reduce the total amount of annotation that needs to be performed by selecting the most useful images to label from a large pool of unlabelled images, thus reducing the time to generate useful training datasets. These processes may be referred to as Human-in-the-Loop Machine Learning

links

Federated learning

Federated learning is an approach to distributed machine learning where a central processor coordinates the training of an individual model in each of its clients. It is a type of distributed ML which means that the data is distributed among different devices or locations and the model is trained on all of them. The central processor aggregates the model updates from all the clients and then sends the global model parameters back to the clients. This is done to protect the privacy of data, as the data remains on the local device and only the global model parameters are shared with the central processor. This technique can be used to train models with large datasets that cannot be stored in a single device, as well as to enable certain privacy-preserving applications.

links

Transformers

Vision transformers are state-of-the-art models for vision tasks such as image classification and object detection. They differ from CNNs as they use self-attention instead of convolution to learn global relations between all pixels in the image. Vision transformers employ a transformer encoder architecture, composed of multi-layer blocks with multi-head self-attention and feed-forward layers, enabling the capture of rich contextual information for more accurate predictions.

links

Adversarial ML

Efforts to detect falsified images & deepfakes

links

  • UAE-RS -> dataset that provides black-box adversarial samples in the remote sensing field
  • PSGAN -> code for paper: Perturbation Seeking Generative Adversarial Networks: A Defense Framework for Remote Sensing Image Scene Classification
  • SACNet -> code for 2021 paper: Self-Attention Context Network: Addressing the Threat of Adversarial Attacks for Hyperspectral Image Classification

Image registration

Image registration is the process of registering one or more images onto another (typically well georeferenced) image. Traditionally this is performed manually by identifying control points (tie-points) in the images, for example using QGIS. This section lists approaches which mostly aim to automate this manual process. There is some overlap with the data fusion section but the distinction I make is that image registration is performed as a prerequisite to downstream processes which will use the registered data as an input.

links

Terrain mapping, Disparity Estimation, Lidar, DEMs & NeRF

Measure surface contours & locate 3D points in space from 2D images. NeRF stands for Neural Radiance Fields and is the term used in deep learning communities to describe a model that generates views of complex 3D scenes based on a partial set of 2D images

links

Thermal Infrared

Thermal infrared remote sensing is a technique used to detect and measure thermal radiation emitted from the Earth’s surface. This technique can be used to measure the temperature of the ground and any objects on it and can detect the presence of different materials. Thermal infrared remote sensing is used to assess land cover, detect land-use changes, and monitor urban heat islands, as well as to measure the temperature of the ground during nighttime or in areas of limited visibility.

links

SAR

SAR (synthetic aperture radar) is used to detect and measure the properties of objects and surfaces on the Earth's surface. SAR can be used to detect changes in terrain, features, and objects over time, as well as to measure the size, shape, and composition of objects and surfaces. SAR can also be used to measure moisture levels in soil and vegetation, or to detect and monitor changes in land use.

links

NDVI - vegetation index

Normalized Difference Vegetation Index (NDVI) is an index used to measure the amount of healthy vegetation in a given area. It is calculated by taking the difference between the near-infrared (NIR) and red (red) bands of a satellite image, and dividing by the sum of the two bands. NDVI can be used to identify areas of healthy vegetation and to assess the health of vegetation in a given area.

links

General image quality

Image quality describes the degree of accuracy with which an image can represent the original object. Image quality is typically measured by the amount of detail, sharpness, and contrast that an image contains. Factors that contribute to image quality include the resolution, format, and compression of the image.

links

  • Convolutional autoencoder network can be employed to image denoising, read about this on the Keras blog
  • jitter-compensation -> Remote Sensing Image Jitter Detection and Compensation Using CNN
  • DeblurGANv2 -> Deblurring (Orders-of-Magnitude) Faster and Better
  • image-quality-assessment -> CNN to predict the aesthetic and technical quality of images
  • Convolutional autoencoder for image denoising -> keras guide
  • piq -> a collection of measures and metrics for image quality assessment
  • FFA-Net -> Feature Fusion Attention Network for Single Image Dehazing
  • DeepCalib -> A Deep Learning Approach for Automatic Intrinsic Calibration of Wide Field-of-View Cameras
  • PerceptualSimilarity -> LPIPS is a perceptual metric which aims to overcome the limitations of traditional metrics such as PSNR & SSIM, to better represent the features the human eye picks up on
  • Optical-RemoteSensing-Image-Resolution -> code for 2018 paper: Deep Memory Connected Neural Network for Optical Remote Sensing Image Restoration. Two applications: Gaussian image denoising and single image super-resolution
  • Hyperspectral-Deblurring-and-Destriping
  • HyDe -> Hyperspectral Denoising algorithm toolbox in Python, with paper
  • HLF-DIP -> code for 2022 paper: Unsupervised Hyperspectral Denoising Based on Deep Image Prior and Least Favorable Distribution
  • RQUNetVAE -> code for 2022 paper: Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image Denoising
  • deep-hs-prior -> code for 2019 paper: Deep Hyperspectral Prior: Denoising, Inpainting, Super-Resolution
  • iquaflow -> from Satellogic, an image quality framework that aims at providing a set of tools to assess image quality by using the performance of AI models trained on the images as a proxy.

Synthetic data

Training data can be hard to acquire, particularly for rare events such as change detection after disasters, or imagery of rare classes of objects. In these situations, generating synthetic training data might be the only option. This has become quite sophisticated, with 3D models being use with open source games engines such as Unreal.

links